Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Neurosci ; 51(3): 742-754, 2020 02.
Article in English | MEDLINE | ID: mdl-31544297

ABSTRACT

Persons suffering from opioid use disorder (OUD) experience long-lasting dysphoric symptoms well into extended periods of withdrawal. This protracted withdrawal syndrome is notably characterized by heightened anxiety and hyperkatifeia. Here, we investigated if an exacerbated withdrawal model of acute morphine dependence results in lasting behavioral adaptation 6 weeks into forced abstinence in C57BL/6J mice. We found that our exacerbated morphine withdrawal paradigm produced distinct alterations in behavior in elevated plus maze (EPM), open field, and social interaction tests in male and female mice. Following protracted withdrawal male mice showed enhanced exploration of the open arms of the EPM, reduced latency to enter the corner of the OF, and a social interaction deficit. In contrast, female mice showed enhanced thigmotaxis in the OF. In both sexes, protracted withdrawal enhanced locomotor behavior in response to subsequent morphine challenge, albeit at different doses. These findings will be relevant for future investigation examining the neural mechanisms underlying these behaviors and will aid in uncovering physiological sex differences in response to opioid withdrawal.


Subject(s)
Analgesics, Opioid , Substance Withdrawal Syndrome , Analgesics, Opioid/therapeutic use , Animals , Anxiety , Female , Male , Mice , Mice, Inbred C57BL , Morphine , Substance Withdrawal Syndrome/drug therapy
2.
Anesthesiology ; 133(4): 812-823, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32773681

ABSTRACT

BACKGROUND: Experimental evidence shows postnatal exposure to anesthesia negatively affects brain development. The PDZ2 domain, mediating protein-protein interactions of the postsynaptic density-95 protein, serves as a molecular target for several inhaled anesthetics. The authors hypothesized that early postnatal disruption of postsynaptic density-95 PDZ2 domain interactions has persistent effects on dendritic spines and cognitive function. METHODS: One-week-old mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active postsynaptic density-95 wild-type PDZ2 peptide along with their respective controls. A subset of these mice also received 4 mg/kg of the nitric oxide donor molsidomine. Hippocampal spine density, long-term potentiation, novel object recognition memory, and fear learning and memory were evaluated in mice. RESULTS: Exposure of 7-day-old mice to isoflurane or postsynaptic density-95 wild-type PDZ2 peptide relative to controls causes: (1) a long-term decrease in mushroom spines at 7 weeks (mean ± SD [spines per micrometer]): control (0.8 ± 0.2) versus isoflurane (0.4 ± 0.2), P < 0.0001, and PDZ2MUT (0.7 ± 0.2) versus PDZ2WT (0.4 ± 0.2), P < 0.001; (2) deficits in object recognition at 6 weeks (mean ± SD [recognition index]): naïve (70 ± 8) versus isoflurane (55 ± 14), P = 0.010, and control (65 ± 13) versus isoflurane (55 ± 14), P = 0.045, and PDZ2MUT (64 ±11) versus PDZ2WT (53 ± 18), P = 0.045; and (3) deficits in fear learning at 7 weeks and memory at 8 weeks (mean ± SD [% freezing duration]): Learning, control (69 ± 12) versus isoflurane (52 ± 13), P < 0.0001, and PDZ2MUT (65 ± 14) versus PDZ2WT (55 ± 14) P = 0.011, and Memory, control (80 ± 17) versus isoflurane (56 ± 23), P < 0.0001 and PDZ2MUT (73 ± 18) versus PDZ2WT (44 ± 19) P < 0.0001. Impairment in long-term potentiation has fully recovered here at 7 weeks (mean ± SD [% baseline]): control (140 ± 3) versus isoflurane (137 ± 8), P = 0.560, and PDZ2MUT (136 ± 17) versus PDZ2WT (128 ± 11), P = 0.512. The isoflurane induced decrease in mushroom spines was preventable by introduction of a nitric oxide donor. CONCLUSIONS: Early disruption of PDZ2 domain-mediated protein-protein interactions mimics isoflurane in decreasing mushroom spine density and causing learning and memory deficits in mice. Prevention of the decrease in mushroom spine density with a nitric oxide donor supports a role for neuronal nitric oxide synthase pathway in mediating this cellular change associated with cognitive impairment.


Subject(s)
Anesthetics, Inhalation/toxicity , Cognition/drug effects , Dendritic Spines/drug effects , Disks Large Homolog 4 Protein/antagonists & inhibitors , Isoflurane/toxicity , Animals , Animals, Newborn , Cognition/physiology , Dendritic Spines/pathology , Dendritic Spines/physiology , Disks Large Homolog 4 Protein/physiology , Female , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Peptides/pharmacology , Post-Synaptic Density/drug effects , Post-Synaptic Density/pathology , Post-Synaptic Density/physiology
3.
Anesthesiology ; 130(2): 247-262, 2019 02.
Article in English | MEDLINE | ID: mdl-30601214

ABSTRACT

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: Some general anesthetics have been shown to have adverse effects on neuronal development that affect neural function and cognitive behavior.Clinically relevant concentrations of inhalational anesthetics inhibit the postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domain-mediated protein-protein interaction between PSD-95 or PSD-93 and N-methyl-D-aspartate receptors or neuronal NO synthase. WHAT THIS ARTICLE TELLS US THAT IS NEW: Neonatal PSD-95 PDZ2WT peptide treatment mimics the effects of isoflurane (~1 minimum alveolar concentration) by altering dendritic spine morphology, neural plasticity, and memory without inducing detectable increases in apoptosis or changes in synaptic density.These results indicate that a single dose of isoflurane (~1 minimum alveolar concentration) or PSD-95 PDZ2WT peptide alters dendritic spine architecture and functions important for cognition in the developing brain. This impairment can be prevented by administration of the NO donor molsidomine. BACKGROUND: In humans, multiple early exposures to procedures requiring anesthesia constitute a significant risk factor for development of learning disabilities and disorders of attention. In animal studies, newborns exposed to anesthetics develop long-term deficits in cognition. Previously, our laboratory showed that postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domains may serve as a molecular target for inhaled anesthetics. This study investigated a role for PDZ interactions in spine development, plasticity, and memory as a potential mechanism for early anesthetic exposure-produced cognitive impairment. METHODS: Postnatal day 7 mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active PSD-95 PDZ2WT peptide. Apoptosis, hippocampal dendritic spine changes, synapse density, long-term potentiation, and cognition functions were evaluated (n = 4 to 18). RESULTS: Exposure of postnatal day 7 mice to isoflurane or PSD-95 PDZ2WT peptide causes a reduction in long thin spines (median, interquartile range [IQR]: wild type control [0.54, 0.52 to 0.86] vs. wild type isoflurane [0.31, 0.16 to 0.38], P = 0.034 and PDZ2MUT [0.86, 0.67 to 1.0] vs. PDZ2WT [0.55, 0.53 to 0.59], P = 0.028), impairment in long-term potentiation (median, IQR: wild type control [123, 119 to 147] and wild type isoflurane [101, 96 to 118], P = 0.049 and PDZ2MUT [125, 119 to 131] and PDZ2WT [104, 97 to 107], P = 0.029), and deficits in acute object recognition (median, IQR: wild type control [79, 72 to 88] vs. wild type isoflurane [63, 55 to 72], P = 0.044 and PDZ2MUT [81, 69 to 84] vs. PDZ2WT [67, 57 to 77], P = 0.039) at postnatal day 21 without inducing detectable differences in apoptosis or changes in synaptic density. Impairments in recognition memory and long-term potentiation were preventable by introduction of a NO donor. CONCLUSIONS: Early disruption of PDZ domain-mediated protein-protein interactions alters spine morphology, synaptic function, and memory. These results support a role for PDZ interactions in early anesthetic exposure-produced cognitive impairment. Prevention of recognition memory and long-term potentiation deficits with a NO donor supports a role for the N-methyl-D-aspartate receptor/PSD-95/neuronal NO synthase pathway in mediating these aspects of isoflurane-induced cognitive impairment.


Subject(s)
Isoflurane/adverse effects , Memory Disorders/chemically induced , Memory Disorders/prevention & control , Molsidomine/pharmacology , Neuronal Plasticity/drug effects , Nitric Oxide Donors/pharmacology , Anesthetics, Inhalation/adverse effects , Animals , Animals, Newborn , Disease Models, Animal , Female , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Mutant Strains
4.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36415467

ABSTRACT

Opioid misuse has dramatically increased over the last few decades resulting in many people suffering from opioid use disorder (OUD). The prevalence of opioid overdose has been driven by the development of new synthetic opioids, increased availability of prescription opioids, and more recently, the COVID-19 pandemic. Coinciding with increases in exposure to opioids, the United States has also observed increases in multiple Narcan (naloxone) administrations as life-saving measures for respiratory depression, and, thus, consequently, naloxone-precipitated withdrawal. Sleep dysregulation is a main symptom of OUD and opioid withdrawal syndrome, and therefore, should be a key facet of animal models of OUD. Here we examine the effect of precipitated and spontaneous morphine withdrawal on sleep behaviors in C57BL/6J mice. We find that morphine administration and withdrawal dysregulate sleep, but not equally across morphine exposure paradigms. Furthermore, many environmental triggers promote relapse to drug-seeking/taking behavior, and the stress of disrupted sleep may fall into that category. We find that sleep deprivation dysregulates sleep in mice that had previous opioid withdrawal experience. Our data suggest that the 3-day precipitated withdrawal paradigm has the most profound effects on opioid-induced sleep dysregulation and further validates the construct of this model for opioid dependence and OUD. Highlights: Morphine withdrawal differentially dysregulates the sleep of male and female mice3-day precipitated withdrawal results in larger changes than spontaneous withdrawalOpioid withdrawal affects responses to future sleep deprivation differently between sexes.

5.
Behav Brain Res ; 448: 114441, 2023 06 25.
Article in English | MEDLINE | ID: mdl-37075956

ABSTRACT

Opioid misuse has dramatically increased over the last few decades resulting in many people suffering from opioid use disorder (OUD). The prevalence of opioid overdose has been driven by the development of new synthetic opioids, increased availability of prescription opioids, and more recently, the COVID-19 pandemic. Coinciding with increases in exposure to opioids, the United States has also observed increases in multiple Narcan (naloxone) administrations as a life-saving measures for respiratory depression, and, thus, consequently, naloxone-precipitated withdrawal. Sleep dysregulation is a main symptom of OUD and opioid withdrawal syndrome, and therefore, should be a key facet of animal models of OUD. Here we examine the effect of precipitated and spontaneous morphine withdrawal on sleep behaviors in C57BL/6 J mice. We find that morphine administration and withdrawal dysregulate sleep, but not equally across morphine exposure paradigms. Furthermore, many environmental triggers promote relapse to drug-seeking/taking behavior, and the stress of disrupted sleep may fall into that category. We find that sleep deprivation dysregulates sleep in mice that had previous opioid withdrawal experience. Our data suggest that the 3-day precipitated withdrawal paradigm has the most profound effects on opioid-induced sleep dysregulation and further validates the construct of this model for opioid dependence and OUD.


Subject(s)
COVID-19 , Morphine Dependence , Opioid-Related Disorders , Substance Withdrawal Syndrome , Male , Female , Mice , Animals , Humans , Morphine/adverse effects , Analgesics, Opioid/pharmacology , Mice, Inbred C57BL , Narcotic Antagonists/pharmacology , Narcotic Antagonists/therapeutic use , Pandemics , Naloxone/pharmacology , Naloxone/therapeutic use , Narcotics/adverse effects , Opioid-Related Disorders/drug therapy , Sleep , Substance Withdrawal Syndrome/drug therapy , Morphine Dependence/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL