Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
Add more filters

Publication year range
1.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27315483

ABSTRACT

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Subject(s)
Autism Spectrum Disorder/microbiology , Diet, High-Fat , Gastrointestinal Microbiome , Obesity/complications , Social Behavior , Animals , Dysbiosis/physiopathology , Female , Germ-Free Life , Housing, Animal , Limosilactobacillus reuteri , Male , Mice , Mice, Inbred C57BL , Oxytocin/analysis , Oxytocin/metabolism , Pregnancy , Ventral Tegmental Area
2.
Cell ; 155(7): 1451-63, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24315484

ABSTRACT

Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.


Subject(s)
Child Development Disorders, Pervasive/microbiology , Gastrointestinal Tract/microbiology , Animals , Anxiety/metabolism , Anxiety/microbiology , Bacteroides fragilis , Behavior, Animal , Brain/physiology , Child , Child Development Disorders, Pervasive/metabolism , Disease Models, Animal , Female , Gastrointestinal Tract/metabolism , Humans , Mice , Mice, Inbred C57BL , Microbiota , Probiotics/administration & dosage
3.
Nature ; 569(7758): 655-662, 2019 05.
Article in English | MEDLINE | ID: mdl-31142855

ABSTRACT

Inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, affect several million individuals worldwide. Crohn's disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study's infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi'omics Database ( http://ibdmdb.org ), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.


Subject(s)
Gastrointestinal Microbiome/genetics , Inflammatory Bowel Diseases/microbiology , Animals , Fungi/pathogenicity , Gastrointestinal Microbiome/immunology , Health , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/virology , Phylogeny , Species Specificity , Transcriptome , Viruses/pathogenicity
4.
Nature ; 562(7728): 589-594, 2018 10.
Article in English | MEDLINE | ID: mdl-30356183

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease that targets pancreatic islet beta cells and incorporates genetic and environmental factors1, including complex genetic elements2, patient exposures3 and the gut microbiome4. Viral infections5 and broader gut dysbioses6 have been identified as potential causes or contributing factors; however, human studies have not yet identified microbial compositional or functional triggers that are predictive of islet autoimmunity or T1D. Here we analyse 10,913 metagenomes in stool samples from 783 mostly white, non-Hispanic children. The samples were collected monthly from three months of age until the clinical end point (islet autoimmunity or T1D) in the The Environmental Determinants of Diabetes in the Young (TEDDY) study, to characterize the natural history of the early gut microbiome in connection to islet autoimmunity, T1D diagnosis, and other common early life events such as antibiotic treatments and probiotics. The microbiomes of control children contained more genes that were related to fermentation and the biosynthesis of short-chain fatty acids, but these were not consistently associated with particular taxa across geographically diverse clinical centres, suggesting that microbial factors associated with T1D are taxonomically diffuse but functionally more coherent. When we investigated the broader establishment and development of the infant microbiome, both taxonomic and functional profiles were dynamic and highly individualized, and dominated in the first year of life by one of three largely exclusive Bifidobacterium species (B. bifidum, B. breve or B. longum) or by the phylum Proteobacteria. In particular, the strain-specific carriage of genes for the utilization of human milk oligosaccharide within a subset of B. longum was present specifically in breast-fed infants. These analyses of TEDDY gut metagenomes provide, to our knowledge, the largest and most detailed longitudinal functional profile of the developing gut microbiome in relation to islet autoimmunity, T1D and other early childhood events. Together with existing evidence from human cohorts7,8 and a T1D mouse model9, these data support the protective effects of short-chain fatty acids in early-onset human T1D.


Subject(s)
Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/physiology , Health Surveys , Age of Onset , Animals , Bifidobacterium/enzymology , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Breast Feeding , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/prevention & control , Disease Models, Animal , Fatty Acids, Volatile/pharmacology , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Humans , Infant , Islets of Langerhans/immunology , Longitudinal Studies , Male , Mice , Milk, Human/immunology , Milk, Human/microbiology , Proteobacteria/enzymology , Proteobacteria/genetics , Proteobacteria/isolation & purification , White People
5.
Nature ; 562(7728): 583-588, 2018 10.
Article in English | MEDLINE | ID: mdl-30356187

ABSTRACT

The development of the microbiome from infancy to childhood is dependent on a range of factors, with microbial-immune crosstalk during this time thought to be involved in the pathobiology of later life diseases1-9 such as persistent islet autoimmunity and type 1 diabetes10-12. However, to our knowledge, no studies have performed extensive characterization of the microbiome in early life in a large, multi-centre population. Here we analyse longitudinal stool samples from 903 children between 3 and 46 months of age by 16S rRNA gene sequencing (n = 12,005) and metagenomic sequencing (n = 10,867), as part of the The Environmental Determinants of Diabetes in the Young (TEDDY) study. We show that the developing gut microbiome undergoes three distinct phases of microbiome progression: a developmental phase (months 3-14), a transitional phase (months 15-30), and a stable phase (months 31-46). Receipt of breast milk, either exclusive or partial, was the most significant factor associated with the microbiome structure. Breastfeeding was associated with higher levels of Bifidobacterium species (B. breve and B. bifidum), and the cessation of breast milk resulted in faster maturation of the gut microbiome, as marked by the phylum Firmicutes. Birth mode was also significantly associated with the microbiome during the developmental phase, driven by higher levels of Bacteroides species (particularly B. fragilis) in infants delivered vaginally. Bacteroides was also associated with increased gut diversity and faster maturation, regardless of the birth mode. Environmental factors including geographical location and household exposures (such as siblings and furry pets) also represented important covariates. A nested case-control analysis revealed subtle associations between microbial taxonomy and the development of islet autoimmunity or type 1 diabetes. These data determine the structural and functional assembly of the microbiome in early life and provide a foundation for targeted mechanistic investigation into the consequences of microbial-immune crosstalk for long-term health.


Subject(s)
Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Surveys and Questionnaires , Adolescent , Animals , Bifidobacterium/classification , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Breast Feeding/statistics & numerical data , Case-Control Studies , Child , Child, Preschool , Cluster Analysis , Datasets as Topic , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/microbiology , Female , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Gastrointestinal Microbiome/genetics , Humans , Infant , Male , Milk, Human/immunology , Milk, Human/microbiology , Pets , RNA, Ribosomal, 16S/genetics , Siblings , Time Factors
6.
Pediatr Res ; 93(7): 2005-2013, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36319696

ABSTRACT

BACKGROUND: Oral microbial therapy has been studied as an intervention for a range of gastrointestinal disorders. Though research suggests that microbial exposure may affect the gastrointestinal system, motility, and host immunity in a pediatric population, data have been inconsistent, with most prior studies being in neither a randomized nor placebo-controlled setting. The aim of this randomized, placebo-controlled study was to evaluate the efficacy of a synbiotic on increasing weekly bowel movements (WBMs) in constipated children. METHODS: Sixty-four children (3-17 years of age) were randomized to receive a synbiotic (n = 33) comprising mixed-chain length oligosaccharides and nine microbial strains, or placebo (n = 31) for 84 days. Stool microbiota was analyzed on samples collected at baseline and completion. The primary outcome was a change from baseline of WBMs in the treatment group compared to placebo. RESULTS: Treatment increased (p < 0.05) the number of WBMs in children with low baseline WBMs, despite broadly distinctive baseline microbiome signatures. Sequencing revealed that low baseline microbial richness in the treatment group significantly anticipated improvements in constipation (p = 0.00074). CONCLUSIONS: These findings suggest the potential for (i) multi-species-synbiotic interventions to improve digestive health in a pediatric population and (ii) bioinformatics-based methods to predict response to microbial interventions in children. IMPACT: Synbiotic microbial treatment improved the number of spontaneous weekly bowel movements in children compared to placebo. Intervention induced an increased abundance of bifidobacteria in children, compared to placebo. All administered probiotic species were enriched in the gut microbiome of the intervention group compared to placebo. Baseline microbial richness demonstrated potential as a predictive biomarker for response to intervention.


Subject(s)
Probiotics , Synbiotics , Child , Humans , Infant , Gastrointestinal Tract/microbiology , Probiotics/therapeutic use , Constipation/therapy , Feces/microbiology , Double-Blind Method
8.
BMC Cancer ; 22(1): 945, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050658

ABSTRACT

BACKGROUND: Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. METHOD: Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient's clinical characteristics. RESULTS: Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors. CONCLUSIONS: In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors.


Subject(s)
Gastrointestinal Microbiome , Uterine Cervical Neoplasms , Female , Gastrointestinal Microbiome/genetics , Humans , Metabolic Networks and Pathways , Metagenome , Mucus
9.
FASEB J ; 35(2): e21201, 2021 02.
Article in English | MEDLINE | ID: mdl-33496989

ABSTRACT

In recent years, it has become apparent that the gut microbiome can influence the functioning and pathological states of organs and systems throughout the body. In this study, we tested the hypothesis that the gut microbiome has a major role in the disruption of the blood-brain barrier (BBB) in the spontaneously hypertensive stroke prone rats (SHRSP), an animal model for hypertensive cerebral small vessel disease (CSVD). Loss of BBB is thought to be an early and initiating component to the full expression of CSVD in animal models and humans. To test this hypothesis, newly born SHRSP pups were placed with foster dams of the SHRSP strain or dams of the WKY strain, the control strain that does not demonstrate BBB dysfunction or develop hypertensive CSVD. Similarly, WKY pups were placed with foster dams of the same or opposite strain. The rationale for cross fostering is that the gut microbiomes are shaped by environmental bacteria of the foster dam and the nesting surroundings. Analysis of the bacterial genera in feces, using 16S rRNA analysis, demonstrated that the gut microbiome in the rat pups was influenced by the foster dam. SHRSP offspring fostered on WKY dams had systolic blood pressures (SBPs) that were significantly decreased by 26 mmHg (P < .001) from 16-20 weeks, compared to SHRSP offspring fostered on SHRSP dams. Similarly WKY offspring fostered on SHRSP dams had significantly increased SBP compared to WKY offspring fostered on WKY dams, although the magnitude of SBP change was not as robust. At ~20 weeks of age, rats fostered on SHRSP dams showed enhanced inflammation in distal ileum regardless of the strain of the offspring. Disruption of BBB integrity, an early marker of CSVD onset, was improved in SHRSPs that were fostered on WKY dams when compared to the SHRSP rats fostered on SHRSP dams. Although SHRSP is a genetic model for CSVD, environmental factors such as the gut microbiota of the foster dam have a major influence in the loss of BBB integrity.


Subject(s)
Blood Pressure , Blood-Brain Barrier/pathology , Gastrointestinal Microbiome , Animals , Blood-Brain Barrier/metabolism , Environment , Ileum/microbiology , Ileum/pathology , Rats, Inbred SHR , Rats, Inbred WKY
10.
Microb Ecol ; 83(3): 811-821, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34223947

ABSTRACT

Limited data exist on the spatial distribution of the colonic bacteria in humans. We collected the colonic biopsies from five segments of 27 polyp-free adults and collected feces from 13 of them. We sequenced the V4 region of the bacterial 16S rRNA gene using the MiSeq platform. The sequencing data were assigned to the amplicon sequence variant (ASV) using SILVA. Biodiversity and the relative abundance of the ASV were compared across the colonic segments and between the rectal and fecal samples. Bacterial functional capacity was assessed using Tax4fun. Each individual had a unique bacterial community composition (Weighted Bray-Curtis P value = 0.001). There were no significant differences in richness, evenness, community composition, and the taxonomic structure across the colon segments in all the samples. Firmicutes (47%), Bacteroidetes (39%), and Proteobacteria (6%) were the major phyla in all segments, followed by Verrucomicrobia, Fusobacteria, Desulfobacterota, and Actinobacteria. There were 15 genera with relative abundance > 1%, including Bacteroides, Faecalibacterium, Escherichia/Shigella, Sutterella, Akkermansia, Parabacteroides, Prevotella, Lachnoclostridium, Alistipes, Fusobacterium, Erysipelatoclostridium, and four Lachnospiraceae family members. Intra-individually, the community compositional dissimilarity was the greatest between the cecum and the rectum. There were significant differences in biodiversity and the taxonomic structure between the rectal and fecal bacteria. The bacterial community composition and structure were homogeneous across the large intestine in adults. The inter-individual variability of the bacteria was greater than inter-segment variability. The rectal and fecal bacteria differed in the community composition and structure.


Subject(s)
Gastrointestinal Microbiome , Adult , Colon/microbiology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Intestinal Mucosa/microbiology , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/genetics
11.
Gut ; 70(12): 2273-2282, 2021 12.
Article in English | MEDLINE | ID: mdl-33328245

ABSTRACT

OBJECTIVE: Necrotising enterocolitis (NEC) is a devastating intestinal disease primarily affecting preterm infants. The underlying mechanisms are poorly understood: mother's own breast milk (MOM) is protective, possibly relating to human milk oligosaccharide (HMO) and infant gut microbiome interplay. We investigated the interaction between HMO profiles and infant gut microbiome development and its association with NEC. DESIGN: We performed HMO profiling of MOM in a large cohort of infants with NEC (n=33) with matched controls (n=37). In a subset of 48 infants (14 with NEC), we also performed longitudinal metagenomic sequencing of infant stool (n=644). RESULTS: Concentration of a single HMO, disialyllacto-N-tetraose (DSLNT), was significantly lower in MOM received by infants with NEC compared with controls. A MOM threshold level of 241 nmol/mL had a sensitivity and specificity of 0.9 for NEC. Metagenomic sequencing before NEC onset showed significantly lower relative abundance of Bifidobacterium longum and higher relative abundance of Enterobacter cloacae in infants with NEC. Longitudinal development of the microbiome was also impacted by low MOM DSLNT associated with reduced transition into preterm gut community types dominated by Bifidobacterium spp and typically observed in older infants. Random forest analysis combining HMO and metagenome data before disease accurately classified 87.5% of infants as healthy or having NEC. CONCLUSION: These results demonstrate the importance of HMOs and gut microbiome in preterm infant health and disease. The findings offer potential targets for biomarker development, disease risk stratification and novel avenues for supplements that may prevent life-threatening disease.


Subject(s)
Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/prevention & control , Feces/microbiology , Milk, Human/chemistry , Oligosaccharides/metabolism , Case-Control Studies , Female , Gastrointestinal Microbiome , Humans , Infant, Newborn , Infant, Premature , Male
12.
Diabetologia ; 64(5): 1079-1092, 2021 05.
Article in English | MEDLINE | ID: mdl-33515070

ABSTRACT

AIMS/HYPOTHESIS: Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6 months to assess its safety and immune response actions on immunity and the gut microbiome. METHODS: A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6 months to 2.99 years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5 mg with dose escalation to 67.5 mg) or placebo for 12 months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. RESULTS: Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. CONCLUSIONS/INTERPRETATION: The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. TRIAL REGISTRATION: Clinicaltrials.gov NCT02547519 FUNDING: The main funding source was the German Center for Diabetes Research (DZD e.V.).


Subject(s)
Diabetes Mellitus, Type 1/prevention & control , Immunotherapy/methods , Insulin/administration & dosage , Administration, Oral , Antibody Formation/drug effects , Antibody Formation/genetics , Autoantibodies/drug effects , Autoantibodies/genetics , Autoimmunity/drug effects , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Family , Female , Germany , Humans , Infant , Insulin/immunology , Male , Primary Prevention/methods
13.
Physiol Genomics ; 53(11): 486-508, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34612061

ABSTRACT

Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.


Subject(s)
Cell Culture Techniques/methods , Colon/metabolism , Culture Media/pharmacology , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Organoids/metabolism , Transcriptome/drug effects , Calcitriol/pharmacology , Collagen/metabolism , Collagen/pharmacology , Crohn Disease/metabolism , Crohn Disease/pathology , Culture Media/chemistry , Drug Combinations , Escherichia coli , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Humans , Laminin/metabolism , Laminin/pharmacology , Organoids/virology , Proteoglycans/metabolism , Proteoglycans/pharmacology , RNA-Seq/methods , Transcriptome/genetics , Virus Diseases/metabolism , Virus Diseases/virology , Viruses
14.
Dig Dis Sci ; 66(9): 2981-2991, 2021 09.
Article in English | MEDLINE | ID: mdl-32974807

ABSTRACT

BACKGROUND: Systemic diseases have been associated with oral health and gut microbiota. We examined the association between oral health and the community composition and structure of the adherent colonic gut microbiota. METHODS: We obtained 197 snap-frozen colonic biopsies from 62 colonoscopy-confirmed polyp-free individuals. Microbial DNA was sequenced for the 16S rRNA V4 region using the Illumina MiSeq, and the sequences were assigned to the operational taxonomic unit based on SILVA. We used a questionnaire to ascertain tooth loss, gum disease, and lifestyle factors. We compared biodiversity and relative abundance of bacterial taxa based on the amount of tooth loss and the presence of gum disease. The multivariable negative binomial regression model for panel data was used to estimate the association between the bacterial count and oral health. False discovery rate-adjusted P value (q value) < .05 indicated statistical significance. RESULTS: More tooth loss and gum disease were associated with lower bacterial alpha diversity. The relative abundance of Faecalibacterium was lower (q values < .05) with more tooth loss. The association was significant after adjusting for age, ethnicity, obesity, smoking, alcohol use, hypertension, diabetes, and the colon segment. The relative abundance of Bacteroides was higher in those with gum disease. CONCLUSIONS: Oral health was associated with alteration in the community composition and structure of the adherent gut bacteria in the colon. The reduced anti-inflammatory Faecalibacterium in participants with more tooth loss may indicate systemic inflammation. Future studies are warranted to confirm our findings and investigate the systemic role of Faecalibacterium.


Subject(s)
Colon , Inflammation , Microbiota , Periodontal Diseases , Tooth Loss , Bacterial Load/methods , Biopsy/methods , Colon/microbiology , Colon/pathology , Correlation of Data , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Humans , Inflammation/immunology , Inflammation/microbiology , Life Style , Male , Microbiota/genetics , Microbiota/immunology , Middle Aged , Oral Health , Periodontal Diseases/diagnosis , Periodontal Diseases/epidemiology , RNA, Ribosomal, 16S/isolation & purification , Sequence Analysis, DNA/methods , Tooth Loss/diagnosis , Tooth Loss/epidemiology
15.
Environ Health ; 20(1): 9, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33468146

ABSTRACT

BACKGROUND: In August 2017, Hurricane Harvey caused unprecedented flooding across the greater Houston area. Given the potential for widespread flood-related exposures, including mold and sewage, and the emotional and mental toll caused by the flooding, we sought to evaluate the short- and long-term impact of flood-related exposures on the health of Houstonians. Our objectives were to assess the association of flood-related exposures with allergic symptoms and stress among Houston-area residents at two time points: within approximately 30 days (T1) and 12 months (T2) after Hurricane Harvey's landfall. METHODS: The Houston Hurricane Harvey Health (Houston-3H) Study enrolled a total of 347 unique participants from four sites across Harris County at two times: within approximately 1-month of Harvey (T1, n = 206) and approximately 12-months after Harvey (T2, n = 266), including 125 individuals who participated at both time points. Using a self-administered questionnaire, participants reported details on demographics, flood-related exposures, and health outcomes, including allergic symptoms and stress. RESULTS: The majority of participants reported hurricane-related flooding in their homes at T1 (79.1%) and T2 (87.2%) and experienced at least one allergic symptom after the hurricane (79.4% at T1 and 68.4% at T2). In general, flood-exposed individuals were at increased risk of upper respiratory tract allergic symptoms, reported at both the T1 and T2 time points, with exposures to dirty water and mold associated with increased risk of multiple allergic symptoms. The mean stress score of study participants at T1 was 8.0 ± 2.1 and at T2, 5.1 ± 3.2, on a 0-10 scale. Participants who experienced specific flood-related exposures reported higher stress scores when compared with their counterparts, especially 1 year after Harvey. Also, a supplementary paired-samples analysis showed that reports of wheezing, shortness of breath, and skin rash did not change between T1 and T2, though other conditions were less commonly reported at T2. CONCLUSION: These initial Houston-3H findings demonstrate that flooding experiences that occurred as a consequence of Hurricane Harvey had lasting impacts on the health of Houstonians up to 1 year after the hurricane.


Subject(s)
Cyclonic Storms , Disasters , Floods , Hypersensitivity/epidemiology , Stress, Psychological/epidemiology , Adolescent , Adult , Aged , Environmental Exposure , Female , Humans , Male , Middle Aged , Sociological Factors , Surveys and Questionnaires , Texas/epidemiology , Young Adult
16.
J Allergy Clin Immunol ; 145(2): 518-527.e8, 2020 02.
Article in English | MEDLINE | ID: mdl-31738994

ABSTRACT

BACKGROUND: The role of the airway microbiome in the development of recurrent wheezing and asthma remains uncertain, particularly in the high-risk group of infants hospitalized for bronchiolitis. OBJECTIVE: We sought to examine the relation of the nasal microbiota at bronchiolitis-related hospitalization and 3 later points to the risk of recurrent wheezing by age 3 years. METHODS: In 17 US centers researchers collected clinical data and nasal swabs from infants hospitalized for bronchiolitis. Trained parents collected nasal swabs 3 weeks after hospitalization and, when healthy, during the summer and 1 year after hospitalization. We applied 16S rRNA gene sequencing to all nasal swabs. We used joint modeling to examine the relation of longitudinal nasal microbiota abundances to the risk of recurrent wheezing. RESULTS: Among 842 infants hospitalized for bronchiolitis, there was 88% follow-up at 3 years, and 31% had recurrent wheezing. The median age at enrollment was 3.2 months (interquartile range, 1.7-5.8 months). In joint modeling analyses adjusting for 16 covariates, including viral cause, a 10% increase in relative abundance of Moraxella or Streptococcus species 3 weeks after day 1 of hospitalization was associated with an increased risk of recurrent wheezing (hazard ratio [HR] of 1.38 and 95% high-density interval [HDI] of 1.11-1.85 and HR of 1.76 and 95% HDI of 1.13-3.19, respectively). Increased Streptococcus species abundance the summer after hospitalization was also associated with a greater risk of recurrent wheezing (HR, 1.76; 95% HDI, 1.15-3.27). CONCLUSIONS: Enrichment of Moraxella or Streptococcus species after bronchiolitis hospitalization was associated with recurrent wheezing by age 3 years, possibly providing new avenues to ameliorate the long-term respiratory outcomes of infants with severe bronchiolitis.


Subject(s)
Bronchiolitis/complications , Moraxella , Nasal Mucosa/microbiology , Respiratory Sounds , Streptococcus , Bronchiolitis/microbiology , Child, Preschool , Female , Humans , Infant , Longitudinal Studies , Male , Respiratory Sounds/etiology
17.
Gut ; 69(8): 1416-1422, 2020 08.
Article in English | MEDLINE | ID: mdl-31744911

ABSTRACT

OBJECTIVE: Higher gluten intake, frequent gastrointestinal infections and adenovirus, enterovirus, rotavirus and reovirus have been proposed as environmental triggers for coeliac disease. However, it is not known whether an interaction exists between the ingested gluten amount and viral exposures in the development of coeliac disease. This study investigated whether distinct viral exposures alone or together with gluten increase the risk of coeliac disease autoimmunity (CDA) in genetically predisposed children. DESIGN: The Environmental Determinants of Diabetes in the Young study prospectively followed children carrying the HLA risk haplotypes DQ2 and/or DQ8 and constructed a nested case-control design. From this design, 83 CDA case-control pairs were identified. Median age of CDA was 31 months. Stool samples collected monthly up to the age of 2 years were analysed for virome composition by Illumina next-generation sequencing followed by comprehensive computational virus profiling. RESULTS: The cumulative number of stool enteroviral exposures between 1 and 2 years of age was associated with an increased risk for CDA. In addition, there was a significant interaction between cumulative stool enteroviral exposures and gluten consumption. The risk conferred by stool enteroviruses was increased in cases reporting higher gluten intake. CONCLUSIONS: Frequent exposure to enterovirus between 1 and 2 years of age was associated with increased risk of CDA. The increased risk conferred by the interaction between enteroviruses and higher gluten intake indicate a cumulative effect of these factors in the development of CDA.


Subject(s)
Autoimmune Diseases/etiology , Celiac Disease/etiology , Enterovirus/isolation & purification , Feces/virology , Glutens/administration & dosage , Adenoviridae/isolation & purification , Autoantibodies/blood , Autoimmune Diseases/blood , Autoimmune Diseases/genetics , Autoimmunity , Case-Control Studies , Celiac Disease/blood , Celiac Disease/genetics , Child, Preschool , Diet , Female , GTP-Binding Proteins/immunology , Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , Humans , Infant , Male , Metagenomics , Protein Glutamine gamma Glutamyltransferase 2 , Risk Factors , Transglutaminases/immunology
18.
Infect Immun ; 88(12)2020 11 16.
Article in English | MEDLINE | ID: mdl-32900816

ABSTRACT

Mucosal surfaces like those present in the lung, gut, and mouth interface with distinct external environments. These mucosal gateways are not only portals of entry for potential pathogens but also homes to microbial communities that impact host health. Secretory immunoglobulin A (SIgA) is the single most abundant acquired immune component secreted onto mucosal surfaces and, via the process of immune exclusion, shapes the architecture of these microbiomes. Not all microorganisms at mucosal surfaces are targeted by SIgA; therefore, a better understanding of the SIgA-coated fraction may identify the microbial constituents that stimulate host immune responses in the context of health and disease. Chronic diseases like type 2 diabetes are associated with altered microbial communities (dysbiosis) that in turn affect immune-mediated homeostasis. 16S rRNA gene sequencing of SIgA-coated/uncoated bacteria (IgA-Biome) was conducted on stool and saliva samples of normoglycemic participants and individuals with prediabetes or diabetes (n = 8/group). These analyses demonstrated shifts in relative abundance in the IgA-Biome profiles between normoglycemic, prediabetic, or diabetic samples distinct from that of the overall microbiome. Differences in IgA-Biome alpha diversity were apparent for both stool and saliva, while overarching bacterial community differences (beta diversity) were also observed in saliva. These data suggest that IgA-Biome analyses can be used to identify novel microbial signatures associated with diabetes and support the need for further studies exploring these communities. Ultimately, an understanding of the IgA-Biome may promote the development of novel strategies to restructure the microbiome as a means of preventing or treating diseases associated with dysbiosis at mucosal surfaces.


Subject(s)
Bacteria/genetics , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/genetics , Immunoglobulin A, Secretory/analysis , Adult , Bacteria/classification , Classification , Diabetes Mellitus, Type 2/immunology , Discriminant Analysis , Dysbiosis , Feces/microbiology , Female , Humans , Immunoglobulin A, Secretory/immunology , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Saliva/microbiology
19.
Pediatr Res ; 88(2): 225-233, 2020 08.
Article in English | MEDLINE | ID: mdl-31816621

ABSTRACT

BACKGROUND: The neonatal cutaneous mycobiome has not been characterized in preterm infants. Invasive fungal infections in preterm neonates are associated with high mortality. The immaturity of the preterm skin predisposes neonates to invasive infection by skin colonizers. We report the clinical and host determinants that influence the skin mycobiome. METHODS: Skin swabs from the antecubital fossa, forehead, and gluteal region of 15 preterm and 15 term neonates were obtained during the first 5 weeks of life. The mycobiome was sequenced using the conserved pan-fungal ITS2 region. Blood samples were used to genotype immune modulating genes. Clinical metadata was collected to determine the clinical predictors of the abundance and diversity of the skin mycobiome. RESULTS: The neonatal mycobiome is characterized by few taxa. Alpha diversity of the mycobiome is influenced by antibiotic exposure, the forehead body site, and the neonatal intensive care unit (NICU) environment. Beta diversity varies with mode of delivery, diet, and body site. The host determinants of the cutaneous microbiome include single-nucleotide polymorphisms in TLR4, NLRP3,CARD8, and NOD2. CONCLUSION: The neonatal cutaneous mycobiome is composed of few genera and is influenced by clinical factors and host genetics, the understanding of which will inform preventive strategies against invasive fungal infections.


Subject(s)
Intensive Care Units, Neonatal , Microbiota , Mycobiome , Skin/microbiology , Anti-Bacterial Agents/pharmacology , CARD Signaling Adaptor Proteins/genetics , Female , Fungi/classification , Genotype , Humans , Infant, Premature , Intensive Care, Neonatal , Longitudinal Studies , Male , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neoplasm Proteins/genetics , Nod2 Signaling Adaptor Protein/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Skin/metabolism , Toll-Like Receptor 4/genetics
20.
Diabetes Obes Metab ; 22(11): 1976-1984, 2020 11.
Article in English | MEDLINE | ID: mdl-32687239

ABSTRACT

AIM: To investigate the role of the gut microbiome in regulating key insulin homeostasis traits (insulin sensitivity, insulin secretion and insulin clearance) whose dysfunction leads to type 2 diabetes (T2D). MATERIALS AND METHODS: The Microbiome and Insulin Longitudinal Evaluation Study (MILES) focuses on African American and non-Hispanic white participants aged 40-80 years without diabetes. Three study visits are planned (at baseline, 15 and 30 months). Baseline measurements include assessment of the stool microbiome and administration of an oral glucose tolerance test, which will yield indexes of insulin sensitivity, insulin secretion and insulin clearance. The gut microbiome profile (composition and function) will be determined using whole metagenome shotgun sequencing along with analyses of plasma short chain fatty acids. Additional data collected include dietary history, sociodemographic factors, health habits, anthropometry, medical history, medications and family history. Most assessments are repeated 15 and 30 months following baseline. RESULTS: After screening 875 individuals, 129 African American and 224 non-Hispanic white participants were enrolled. At baseline, African American participants have higher blood pressure, weight, body mass index, waist and hip circumferences but similar waist-hip ratio compared with the non-Hispanic white participants. On average, African American participants are less insulin-sensitive and have higher acute insulin secretion and lower insulin clearance. CONCLUSIONS: The longitudinal design and robust characterization of potential mediators will allow for the assessment of glucose and insulin homeostasis and gut microbiota as they change over time, improving our ability to discern causal relationships between the microbiome and the insulin homeostasis traits whose deterioration determines T2D, setting the stage for future microbiome-directed therapies to prevent and treat T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Insulin Resistance , Blood Glucose , Diabetes Mellitus, Type 2/epidemiology , Glucose Tolerance Test , Humans , Insulin
SELECTION OF CITATIONS
SEARCH DETAIL