ABSTRACT
With accelerating environmental change, understanding forest disturbance impacts on trade-offs between biodiversity and carbon dynamics is of high socio-economic importance. Most studies, however, have assessed immediate or short-term effects of disturbance, while long-term impacts remain poorly understood. Using a tree-ring-based approach, we analysed the effect of 250 years of disturbances on present-day biodiversity indicators and carbon dynamics in primary forests. Disturbance legacies spanning centuries shaped contemporary forest co-benefits and trade-offs, with contrasting, local-scale effects. Disturbances enhanced carbon sequestration, reaching maximum rates within a comparatively narrow post-disturbance window (up to 50 years). Concurrently, disturbance diminished aboveground carbon storage, which gradually returned to peak levels over centuries. Temporal patterns in biodiversity potential were bimodal; the first maximum coincided with the short-term post-disturbance carbon sequestration peak, and the second occurred during periods of maximum carbon storage in complex old-growth forest. Despite fluctuating local-scale trade-offs, forest biodiversity and carbon storage remained stable across the broader study region, and our data support a positive relationship between carbon stocks and biodiversity potential. These findings underscore the interdependencies of forest processes, and highlight the necessity of large-scale conservation programmes to effectively promote both biodiversity and long-term carbon storage, particularly given the accelerating global biodiversity and climate crises.
Subject(s)
Carbon , Climate Change , Biodiversity , Carbon/analysis , Carbon Sequestration , Conservation of Natural Resources , Forests , TreesABSTRACT
Estimates of historical disturbance patterns are essential to guide forest management aimed at ensuring the sustainability of ecosystem functions and biodiversity. However, quantitative estimates of various disturbance characteristics required in management applications are rare in longer-term historical studies. Thus, our objectives were to (1) quantify past disturbance severity, patch size, and stand proportion disturbed and (2) test for temporal and subregional differences in these characteristics. We developed a comprehensive dendrochronological method to evaluate an approximately two-century-long disturbance record in the remaining Central and Eastern European primary mountain spruce forests, where wind and bark beetles are the predominant disturbance agents. We used an unprecedented large-scale nested design data set of 541 plots located within 44 stands and 6 subregions. To quantify individual disturbance events, we used tree-ring proxies, which were aggregated at plot and stand levels by smoothing and detecting peaks in their distributions. The spatial aggregation of disturbance events was used to estimate patch sizes. Data exhibited continuous gradients from low- to high-severity and small- to large-size disturbance events. In addition to the importance of small disturbance events, moderate-scale (25-75% of the stand disturbed, >10 ha patch size) and moderate-severity (25-75% of canopy disturbed) events were also common. Moderate disturbances represented more than 50% of the total disturbed area and their rotation periods ranged from one to several hundred years, which is within the lifespan of local tree species. Disturbance severities differed among subregions, whereas the stand proportion disturbed varied significantly over time. This indicates partially independent variations among disturbance characteristics. Our quantitative estimates of disturbance severity, patch size, stand proportion disturbed, and associated rotation periods provide rigorous baseline data for future ecological research, decisions within biodiversity conservation, and silviculture intended to maintain native biodiversity and ecosystem functions. These results highlight a need for sufficiently large and adequately connected networks of strict reserves, more complex silvicultural treatments that emulate the natural disturbance spectrum in harvest rotation times, sizes, and intensities, and higher levels of tree and structural legacy retention.
Subject(s)
Ecosystem , Picea , Animals , Biodiversity , Forests , TreesABSTRACT
Removal of canopy trees by logging causes shifts in herbaceous diversity and increases invasibility of the forest understory. However, disturbed (cut) trees of many species do not die but resprout from remaining parts. Because sprouts develop vigorously immediately after disturbances, we hypothesized that sprouts of logged trees offset the changes in species richness and invasibility of the herbaceous layer by eliminating the rise in the resource availability during the time before regeneration from seeds develops. To test this, we analyzed data on herbaceous vegetation and sprout biomass collected in a broadleaved temperate forest in the Czech Republic before and for 6 years after logging. Sprouts that were produced by most of the stumps of logged trees offset large rises in species richness and cover of herbaceous plants and the resource availability that followed logging, but they affected the alien plants more significantly than the native plants. The sprouting canopy effectually eliminated most of the alien species that colonized the forest following a logging event. These findings indicate that in forests dominated by tree species with resprouting ability, sprouts drive the early post-disturbance dynamics of the herbaceous layer. By offsetting the post-disturbance vegetation shifts, resprouting supports forest resilience.