Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Nature ; 610(7932): 513-518, 2022 10.
Article in English | MEDLINE | ID: mdl-36224387

ABSTRACT

As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Policy , Biodiversity , Biota , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Environmental Policy/legislation & jurisprudence , Environmental Policy/trends , Goals , United Nations , Animals
2.
J Environ Manage ; 355: 120413, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442655

ABSTRACT

Active and passive approaches to rewilding and ecological restoration are increasingly considered to promote nature recovery at scale. However, historical data on vegetation trajectories have rarely been used to inform decisions on whether active or passive management is most appropriate to aid recovery of a specific ecosystem, which can lead to sub-optimal approaches being deployed and reduced biodiversity benefits. To demonstrate how understanding past changes can inform future management strategies, this study used satellite remote sensing data to analyse the changes in land cover and primary productivity within the Greater Côa Valley in Portugal, which has experienced wide-scale land abandonment. Results show that some areas in the Valley regenerated well following land abandonment in the region, leading to a more heterogeneous landscape of habitats for wildlife, whereas in other areas passive recovery was slow. As Rewilding Portugal intensifies its nature recovery efforts in the region, this study calls for strategic deployment of passive and active approaches to maximise conservation benefits. More broadly, our results highlight how baseline vegetational trajectories and contextual information can help inform whether active or passive management approaches may be suitable on a site-by-site basis for both rewilding and restoration projects.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Conservation of Natural Resources/methods , Biodiversity , Animals, Wild , Portugal
3.
Environ Monit Assess ; 196(6): 580, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805109

ABSTRACT

Urban green spaces are central components of urban ecosystems, providing refuge for wildlife while helping 'future proof' cities against climate change. Conversion of urban green spaces to artificial turf has become increasingly popular in various developed countries, such as the UK, leading to reduced urban ecosystem services delivery. To date, there is no established satellite remote sensing method for reliably detecting and mapping artificial turf expansion at scale. We here assess the combined use of very high-resolution multispectral satellite imagery and classical, open source, supervised classification approaches to map artificial lawns in a typical British city. Both object-based and pixel-based classifications struggled to reliably detect artificial turf, with large patches of artificial turf not being any more reliably identified than small patches of artificial turf. As urban ecosystems are increasingly recognised for their key contributions to human wellbeing and health, the poor performance of these standard methods highlights the urgency of developing and applying new, easily accessible approaches for the monitoring of these important ecosystems.


Subject(s)
Ecosystem , Environmental Monitoring , Satellite Imagery , Environmental Monitoring/methods , Remote Sensing Technology , Cities , Conservation of Natural Resources/methods
4.
Glob Chang Biol ; 28(12): 3883-3901, 2022 06.
Article in English | MEDLINE | ID: mdl-35274416

ABSTRACT

Tropical forests in India have declined at an alarming rate over the past century, with extensive literature focusing on the high contributions of agricultural expansions to deforestation, while the effects of climate change have largely been overlooked. Climate change effects, such as increasing temperatures, drought and flooding, have already occurred, and are projected to worsen. Climate velocity, a metric that accounts for spatial heterogeneity in climate, can help identify contiguous areas under greater climate stress and potential climate refuges in addition to traditional temporal trends. Here, we examined the relative contribution of climate changes to forest loss in India during the period 2001-2018, at two spatial (regional and national) and two temporal (seasonal and annual) scales. This includes, for the first time, a characterization of climate velocity in the country. Our findings show that annual forest loss increased substantially over the 17-year period examined (2001-2018), with the majority of forest loss occurring in the Northeast region. Decreases in temporal trends of temperature and precipitation were most associated with forest losses, but there was large spatial and seasonal variation in the relationship. In every region except the Northeast, forest losses were correlated with faster velocities of at least one climate variable but overlapping areas of high velocities were rare. Our findings indicate that climate changes have played an important role in India's past forest loss, but likely remain secondary to other factors at present. We stress concern for climates velocities recorded in the country, reaching 97 km year-1 , and highlight that understanding the different regional and seasonal relationships between climatic conditions and forest distributions will be key to effective protection of the country's remaining forests as climate change accelerates.


Subject(s)
Climate Change , Forests , Droughts , Seasons , Temperature
5.
J Environ Manage ; 322: 116003, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36067667

ABSTRACT

Active and passive restoration are both increasingly considered as options for nature recovery, with potential to help address the current climate and biodiversity crises. So far, however, there is little practical information on how to gauge the benefits and limitations of each approach, in terms of their effects on large-scale ecosystem composition, structure, and functioning. To address this knowledge gap, this study used satellite remote sensing to investigate changes in land cover and primary productivity within the forests of the Fagaraș Mountains in southern Romania, where large-scale restoration and land abandonment have simultaneously taken place across the past two decades. To our knowledge, this study is the first to contrast the impacts of active and passive restoration within a single landscape on components of ecosystem structure and functioning at such temporal and spatial scales. Results show active restoration activities to be very effective at facilitating the recovery of cleared forests in small parts of the landscapes; but they also highlight substantial areas of natural forest expansion following agricultural abandonment, in line with regional trends. Altogether, our approach clearly illustrates how freely available satellite data can (1) provide vital spatially explicit insights about large-scale and long-term transformations in ecosystem composition, structure and functioning; and (2) help contrast the impacts of restoration approaches on vegetation distribution and dynamics, in ways that complement existing ground-based studies.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , Biodiversity , Forests
6.
J Environ Manage ; 312: 114867, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35378468

ABSTRACT

Rewilding is increasingly considered as an option for environmental regeneration, with potential for enhancing both biodiversity and ecosystem services. So far, however, there is little practical information on how to gauge the benefits and limitations of rewilding schemes on ecosystem composition, structure and functioning. To address this knowledge gap, we explored how satellite remote sensing can contribute to informing the monitoring and evaluation of rewilding projects, using the Knepp estate as a case study. To our knowledge, this study is the first to assess the impacts of rewilding as an ecological regeneration strategy on landscape structure and functioning over several decades. Results show significant changes in land cover distribution over the past 20 years inside rewilded areas in the Knepp estate, with a 41.4% decrease in areas with brown agriculture and grass, a roughly sixfold increase in areas covered with shrubs, and a 40.9% increase in areas with trees; vegetation in the rewilded areas also showed a widespread increase in annual primary productivity. Changes in land cover and primary productivity are particularly pronounced in the part of the estate that began its rewilding journey with a period of large herbivore absence. Altogether, our approach clearly demonstrates how freely available satellite data can (1) provide vital insights about long-term changes in ecosystem composition, structure and functioning, even for small, heterogeneous and relatively intensively used landscapes; and (2) help deepen our understanding of the impacts of rewilding on vegetation distribution and dynamics, in ways that complement existing ground-based studies on the impacts of this approach on ecological communities.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , Biodiversity , Conservation of Natural Resources/methods , Herbivory
7.
Proc Natl Acad Sci U S A ; 114(3): 528-533, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28028225

ABSTRACT

Establishing and maintaining protected areas (PAs) are key tools for biodiversity conservation. However, this approach is insufficient for many species, particularly those that are wide-ranging and sparse. The cheetah Acinonyx jubatus exemplifies such a species and faces extreme challenges to its survival. Here, we show that the global population is estimated at ∼7,100 individuals and confined to 9% of its historical distributional range. However, the majority of current range (77%) occurs outside of PAs, where the species faces multiple threats. Scenario modeling shows that, where growth rates are suppressed outside PAs, extinction rates increase rapidly as the proportion of population protected declines. Sensitivity analysis shows that growth rates within PAs have to be high if they are to compensate for declines outside. Susceptibility of cheetah to rapid decline is evidenced by recent rapid contraction in range, supporting an uplisting of the International Union for the Conservation of Nature (IUCN) Red List threat assessment to endangered. Our results are applicable to other protection-reliant species, which may be subject to systematic underestimation of threat when there is insufficient information outside PAs. Ultimately, conserving many of these species necessitates a paradigm shift in conservation toward a holistic approach that incentivizes protection and promotes sustainable human-wildlife coexistence across large multiple-use landscapes.


Subject(s)
Acinonyx , Conservation of Natural Resources , Africa , Animals , Asia , Biodiversity , Computer Simulation , Extinction, Biological , Models, Biological , Population Dynamics/trends , Risk Factors
8.
J Environ Manage ; 267: 110636, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32421670

ABSTRACT

Rapid climate change is threatening the stability and functioning of Arctic ecosystems. As the Arctic warms, shrubs have been widely observed to expand, which has potentially serious consequences for global climate regulation and for the ecological processes characterising these ecosystems. However, it is currently unclear why this shrubification has been spatially uneven across the Arctic, with herbivory being suggested as a key regulating factor. By taking advantage of freely available satellite imagery spanning three decades, we mapped changes in shrub cover in the Yamal Peninsula and related these to changes in summer temperature and reindeer population size. We found no evidence that shrubs had expanded in the study site, despite increasing summer temperatures. At the same time, herbivore pressure increased significantly, with the local reindeer population size growing by about 75%. Altogether, our results thus point towards increases in large herbivore pressure having compensated for the warming of the Peninsula, halting the shrubification of the area. This suggests that strategic semi-domesticated reindeer husbandry, which is a common practice across the Eurasian Arctic, could represent an efficient environmental management strategy for maintaining open tundra landscapes in the face of rapid climate change.


Subject(s)
Reindeer , Animals , Arctic Regions , Climate Change , Ecosystem , Tundra
9.
Glob Chang Biol ; 22(12): 3948-3959, 2016 12.
Article in English | MEDLINE | ID: mdl-27002684

ABSTRACT

Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5-year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.


Subject(s)
Biodiversity , Birds/classification , Phylogeny , Animals , Ecosystem , North America
11.
Proc Biol Sci ; 282(1817): 20151348, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26468240

ABSTRACT

Ecosystem services (ES) approaches to biodiversity conservation are currently high on the ecological research and policy agendas. However, despite a wealth of studies into biodiversity's role in maintaining ES (B-ES relationships) across landscapes, we still lack generalities in the nature and strengths of these linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack of adherence to definitions and thus a confusion between final ES and the ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative biodiversity indices and singular hypotheses and (iii) top-down analyses across large spatial scales and overlooking of context-dependency. The biodiversity-ecosystem functioning (B-EF) field provides an alternate context for examining biodiversity's mechanistic role in shaping ES, focusing on species' characteristics that may drive EFs via multiple mechanisms across contexts. Despite acknowledgements of a need for B-ES research to look towards underlying B-EF linkages, the connections between these areas of research remains weak. With this review, we pull together recent B-EF findings to identify key areas for future developments in B-ES research. We highlight a means by which B-ES research may begin to identify how and when multiple underlying B-EF relationships may scale to final ES delivery and trade-offs.


Subject(s)
Biodiversity , Ecosystem , Conservation of Natural Resources , Ecology/methods
12.
Proc Biol Sci ; 281(1796): 20141644, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25320172

ABSTRACT

Languages share key evolutionary properties with biological species, and global-level spatial congruence in richness and threat is documented between languages and several taxonomic groups. However, there is little understanding of the functional connection between diversification or extinction in languages and species, or the relationship between linguistic and species richness across different spatial scales. New Guinea is the world's most linguistically rich region and contains extremely high biological diversity. We demonstrate significant positive relationships between language and mammal richness in New Guinea across multiple spatial scales, revealing a likely functional relationship over scales at which infra-island diversification may occur. However, correlations are driven by spatial congruence between low levels of language and species richness. Regional biocultural richness may have showed closer congruence before New Guinea's linguistic landscape was altered by Holocene demographic events. In contrast to global studies, we demonstrate a significant negative correlation across New Guinea between areas with high levels of threatened languages and threatened mammals, indicating that landscape-scale threats differ between these groups. Spatial resource prioritization to conserve biodiversity may not benefit threatened languages, and conservation policy must adopt a multi-faceted approach to protect biocultural diversity as a whole.


Subject(s)
Biodiversity , Conservation of Natural Resources , Language , Animals , Culture , Extinction, Biological , Geography , Humans , Linguistics , Mammals/classification , Mammals/physiology , New Guinea , Population Dynamics
13.
Ecol Evol ; 14(2): e11015, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343580

ABSTRACT

In the degraded and modified environment of the Scottish Highlands, novel ungulate communities have arisen following local extinctions, reintroductions, and the introduction of non-native species. An understanding of the dynamics and interactions within these unique mammal communities is important as many of these mammals represent keystone species with disproportionate impacts on the environment. Using a camera trap survey, we investigated land cover preferences and spatiotemporal interactions within a Scottish ungulate community: the sika deer (Cervus nippon), the roe deer (Capreolus capreolus), the red deer (Cervus elaphus), and the wild boar (Sus scrofa). We used generalised linear models to assess land cover preferences and the effect of human disturbance; spatiotemporal interactions were characterised using time interval modelling. We found that sika deer and roe deer preferred coniferous plantations and grasslands, with sika deer additionally preferring woodland. For red deer, we found a slight preference for wetland over woodland; however, the explained variance was low. Finally, wild boar preferred grassland and woodland and avoided coniferous plantations, heathland, and shrubland. Contrary to our expectations, we found no evidence that human disturbance negatively impacted ungulates' distributions, potentially because ungulates temporally avoid humans or because dense vegetation cover mitigates the impacts of humans on their distributions. Furthermore, we detected a spatiotemporal association between sika deer and roe deer. Although the underlying cause of this is unknown, we hypothesise that interactions such as grazing facilitation or an anti-predator response to culling could be driving this pattern. Our work provides a preliminary analysis of the dynamics occurring within a novel ungulate community and also highlights current knowledge gaps in our understanding of the underlying mechanisms dictating the observed spatiotemporal associations.

14.
Microbiome ; 12(1): 75, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627822

ABSTRACT

BACKGROUND: Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. RESULTS: We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. CONCLUSIONS: We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem changed. Video Abstract.


Subject(s)
Anthozoa , Microbiota , Animals , Coral Reefs , Ecosystem , Hydrogen-Ion Concentration , Ocean Acidification , Seawater , Anthozoa/physiology
15.
Trends Ecol Evol ; 39(1): 89-100, 2024 01.
Article in English | MEDLINE | ID: mdl-38114339

ABSTRACT

We present the results of our 15th horizon scan of novel issues that could influence biological conservation in the future. From an initial list of 96 issues, our international panel of scientists and practitioners identified 15 that we consider important for societies worldwide to track and potentially respond to. Issues are novel within conservation or represent a substantial positive or negative step-change with global or regional extents. For example, new sources of hydrogen fuel and changes in deep-sea currents may have profound impacts on marine and terrestrial ecosystems. Technological advances that may be positive include benchtop DNA printers and the industrialisation of approaches that can create high-protein food from air, potentially reducing the pressure on land for food production.


Subject(s)
Biodiversity , Ecosystem , Conservation of Natural Resources , Forecasting , Food
16.
Ecol Evol ; 13(5): e10063, 2023 May.
Article in English | MEDLINE | ID: mdl-37168983

ABSTRACT

How to best track species as they rapidly alter their distributions in response to climate change has become a key scientific priority. Information on species distributions is derived from biological records, which tend to be primarily sourced from traditional recording schemes, but increasingly also by citizen science initiatives and social media platforms, with biological recording having become more accessible to the general public. To date, however, our understanding of the respective potential of social media and citizen science to complement the information gathered by traditional recording schemes remains limited, particularly when it comes to tracking species on the move with climate change. To address this gap, we investigated how species occurrence observations vary between different sources and to what extent traditional, citizen science, and social media records are complementary, using the Banded Demoiselle (Calopteryx splendens) in Britain as a case study. Banded Demoiselle occurrences were extracted from citizen science initiatives (iRecord and iNaturalist) and social media platforms (Facebook, Flickr, and Twitter), and compared with traditional records primarily sourced from the British Dragonfly Society. Our results showed that species presence maps differ between record types, with 61% of the citizen science, 58% of the traditional, and 49% of the social media observations being unique to that data type. Banded Demoiselle habitat suitability maps differed most according to traditional and social media projections, with traditional and citizen science being the most consistent. We conclude that (i) social media records provide insights into the Banded Demoiselle distribution and habitat preference that are different from, and complementary to, the insights gathered from traditional recording schemes and citizen science initiatives; (ii) predicted habitat suitability maps that ignore information from social media records can substantially underestimate (by over 3500 km2 in the case of the Banded Demoiselle) potential suitable habitat availability.

17.
Trends Ecol Evol ; 38(1): 96-107, 2023 01.
Article in English | MEDLINE | ID: mdl-36460563

ABSTRACT

We present the results of our 14th horizon scan of issues we expect to influence biological conservation in the future. From an initial set of 102 topics, our global panel of 30 scientists and practitioners identified 15 issues we consider most urgent for societies worldwide to address. Issues are novel within biological conservation or represent a substantial positive or negative step change at global or regional scales. Issues such as submerged artificial light fisheries and accelerating upper ocean currents could have profound negative impacts on marine or coastal ecosystems. We also identified potentially positive technological advances, including energy production and storage, improved fertilisation methods, and expansion of biodegradable materials. If effectively managed, these technologies could realise future benefits for biological diversity.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Forecasting , Fisheries
18.
Glob Chang Biol ; 18(10): 3050-3062, 2012 Oct.
Article in English | MEDLINE | ID: mdl-28741831

ABSTRACT

Animal responses to global climate variation might be spatially inconsistent. This may arise from spatial variation in factors limiting populations' growth or from differences in the links between global climate patterns and ecologically relevant local climate variation. For example, the North Atlantic Oscillation (NAO) has a spatially consistent relation to temperature, but inconsistent spatial relation to snow depth in Scandinavia. Furthermore, there are multiple mechanistic ways by which climate may limit animal populations, involving both direct effects through thermoregulation and indirect pathways through trophic interactions. It is conceptually appealing to directly model the predicted mechanistic links. This includes the use of climate variables mimicking such interactions, for example, to use growing degree days (GDD) as a proxy for plant growth rather than average monthly temperature. Using a unique database of autumn body mass of 83331 domestic lambs from the period 1992-2007 in four alpine ranges in Norway, we demonstrate the utility of hierarchical, mechanistic path models fitted using a Bayesian approach to analyse explicitly predicted relationships among environmental variables and between lamb body mass and the environmental variables. We found large spatial variation in strength of responses of autumn lamb body mass to the NAO, to a proxy for plant growth in spring (the Normalized Difference Vegetation Index, NDVI) and effects even differed in direction to local summer climate. Average local temperature outperformed GDD as a predictor of the NDVI, whereas the NAO index in two areas outperformed local weather variables as a predictor of lamb body mass, despite the weaker mechanistic link. Our study highlights that spatial variation in strength of herbivore responses may arise from several processes. Furthermore, mechanistically more appealing measures do not always increase predictive power due to scale of measurement and since global measures may provide more relevant "weather packages" for larger scales.

19.
Am J Phys Anthropol ; 147(1): 52-63, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21989507

ABSTRACT

Host parasite diversity plays a fundamental role in ecological and evolutionary processes, yet the factors that drive it are still poorly understood. A variety of processes, operating across a range of spatial scales, are likely to influence both the probability of parasite encounter and subsequent infection. Here, we explored eight possible determinants of parasite richness, comprising rainfall and temperature at the population level, ranging behavior and home range productivity at the group level, and age, sex, body condition, and social rank at the individual level. We used a unique dataset describing gastrointestinal parasites in a terrestrial subtropical vertebrate (chacma baboons, Papio ursinus), comprising 662 fecal samples from 86 individuals representing all age-sex classes across two groups over two dry seasons in a desert population. Three mixed models were used to identify the most important factor at each of the three spatial scales (population, group, individual); these were then standardized and combined in a single, global, mixed model. Individual age had the strongest influence on parasite richness, in a convex relationship. Parasite richness was also higher in females and animals in poor condition, albeit at a lower order of magnitude than age. Finally, with a further halving of effect size, parasite richness was positively correlated to day range and temperature. These findings indicate that a range of factors influence host parasite richness through both encounter and infection probabilities but that individual-level processes may be more important than those at the group or population level.


Subject(s)
Behavior, Animal/physiology , Papio ursinus/parasitology , Parasitic Diseases, Animal/parasitology , Animals , Biological Evolution , Environment , Feces/parasitology , Female , Host-Parasite Interactions , Male , Nematoda/isolation & purification , Papio ursinus/physiology , Rain , Temperature , Tubulina/isolation & purification
20.
Ambio ; 51(1): 93-102, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33983560

ABSTRACT

More than 30 years after it was first proposed as a biodiversity conservation strategy, rewilding remains a controversial concept. There is currently little agreement about what the goals of rewilding are, and how these are best achieved, limiting the utility of rewilding in mainstream conservation. Achieving consensus about rewilding requires agreeing about what "wild" means, but many different definitions exist, reflecting the diversity of values in conservation. There are three key debates that must be addressed to find a consensual definition of "wild": (1) to which extent can people and "wild" nature co-exist?; (2) how much space does "wild" nature need? and (3) what kinds of "wild" nature do we value? Depending on the kinds of "wild" nature rewilding aims to create, rewilding policy will be faced with managing different opportunities and risks for biodiversity and people.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Humans , Policy
SELECTION OF CITATIONS
SEARCH DETAIL