Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Hum Genet ; 110(2): 359-367, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736293

ABSTRACT

Sex-biased admixture can be inferred from ancestry-specific proportions of X chromosome and autosomes. In a paper published in the American Journal of Human Genetics, Micheletti et al.1 used this approach to quantify male and female contributions following the transatlantic slave trade. Using a large dataset from 23andMe, they concluded that African and European contributions to gene pools in the Americas were much more sex biased than previously thought. We show that the reported extreme sex-specific contributions can be attributed to unassigned genetic ancestry as well as the limitations of simple models of sex-biased admixture. Unassigned ancestry proportions in the study by Micheletti et al. ranged from ∼1% to 21%, depending on the type of chromosome and geographic region. A sensitivity analysis illustrates how this unassigned ancestry can create false patterns of sex bias and that mathematical models are highly sensitive to slight sampling errors when inferring mean ancestry proportions, making confidence intervals necessary. Thus, unassigned ancestry and the sensitivity of the models effectively prohibit the interpretation of estimated sex biases for many geographic regions in Micheletti et al. Furthermore, Micheletti et al. assumed models of a single admixture event. Using simulations, we find that violations of demographic assumptions, such as subsequent gene flow and/or sex-specific assortative mating, may have confounded the analyses of Micheletti et al., but unassigned ancestry was likely the more important confounding factor. Our findings underscore the importance of using complete ancestry information, sufficiently large sample sizes, and appropriate models when inferring sex-biased patterns of demography. This Matters Arising paper is in response to Micheletti et al.,1 published in American Journal of Human Genetics. See also the response by Micheletti et al.,2 published in this issue.


Subject(s)
Genetics, Population , Sexism , Female , Humans , Male , Chromosomes , Gene Flow , Africa , Europe
2.
bioRxiv ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39091830

ABSTRACT

Following introgression, Neanderthal DNA was initially purged from non-African genomes, but the evolutionary fate of remaining introgressed DNA has not been explored yet. To fill this gap, we analyzed 30,780 admixed genomes with African-like ancestry from the All of Us research program, in which Neanderthal alleles encountered novel genetic backgrounds during the last 15 generations. Observed amounts of Neanderthal DNA approximately match expectations based on ancestry proportions, suggesting neutral evolution. Nevertheless, we identified genomic regions that have significantly less or more Neanderthal ancestry than expected and are associated with spermatogenesis, innate immunity, and other biological processes. We also identified three novel introgression desert-like regions in recently admixed genomes, whose genetic features are compatible with hybrid incompatibilities and intrinsic negative selection. Overall, we find that much of the remaining Neanderthal DNA in human genomes is not under strong selection, and complex evolutionary dynamics have shaped introgression landscapes in our species.

3.
bioRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38293167

ABSTRACT

Androgenetic alopecia is a highly heritable trait. However, much of our understanding about the genetics of male pattern baldness comes from individuals of European descent. Here, we examined a novel dataset comprising 2,136 men from Ghana, Nigeria, Senegal, and South Africa that were genotyped using a custom array. We first tested how genetic predictions of baldness generalize from Europe to Africa, finding that polygenic scores from European GWAS yielded AUC statistics that ranged from 0.513 to 0.546, indicating that genetic predictions of baldness in African populations performed notably worse than in European populations. Subsequently, we conducted the first African GWAS of androgenetic alopecia, focusing on self-reported baldness patterns at age 45. After correcting for present age, population structure, and study site, we identified 266 moderately significant associations, 51 of which were independent (p-value < 10-5, r2 < 0.2). Most baldness associations were autosomal, and the X chromosomes does not appear to have a large impact on baldness in African men. Finally, we examined the evolutionary causes of continental differences in genetic architecture. Although Neanderthal alleles have previously been associated with skin and hair phenotypes, we did not find evidence that European-ascertained baldness hits were enriched for signatures of ancient introgression. Most loci that are associated with androgenetic alopecia are evolving neutrally. However, multiple baldness-associated SNPs near the EDA2R and AR genes have large allele frequency differences between continents. Collectively, our findings illustrate how evolutionary history contributes to the limited portability of genetic predictions across ancestries.

4.
J Mol Biol ; 435(14): 168159, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37244571

ABSTRACT

Massive sequencing of microbiomes has led to the discovery of a large number of phage genomes with intermittent stop codon recoding. We have developed a computational tool, MgCod, that identifies genomic regions (blocks) with distinct stop codon recoding simultaneously with the prediction of protein-coding regions. When MgCod was used to scan a large volume of human metagenomic contigs hundreds of viral contigs with intermittent stop codon recoding were revealed. Many of these contigs originated from genomes of known crAssphages. Further analyses had shown that intermittent recoding was associated with subtle patterns in the organization of protein-coding genes, such as 'single-coding' and 'dual-coding'. The dual-coding genes, clustered into blocks, could be translated by two alternative codes producing nearly identical proteins. It was observed that the dual-coded blocks were enriched with the early-stage phage genes, while the late-stage genes were residing in the single-coded blocks. MgCod can identify types of stop codon recoding in novel genomic sequences in parallel with gene prediction. It is available for download from https://github.com/gatech-genemark/MgCod.


Subject(s)
Bacteriophages , Codon, Terminator , Genome, Viral , Humans , Bacteriophages/genetics , Codon, Terminator/genetics , Proteins/genetics , Sequence Analysis
5.
Genome Biol Evol ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-36987563

ABSTRACT

As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.


Subject(s)
Genetic Variation , Genetics, Population , Africa, Southern , Biological Evolution , Genome
6.
G3 (Bethesda) ; 12(7)2022 07 06.
Article in English | MEDLINE | ID: mdl-35536195

ABSTRACT

Hybridization is a common occurrence in natural populations, and introgression is a major source of genetic variation. Despite the evolutionary importance of adaptive introgression, classical population genetics theory does not take into account hybrid fitness effects. Specifically, heterosis (i.e. hybrid vigor) and Dobzhansky-Muller incompatibilities influence the fates of introgressed alleles. Here, we explicitly account for polygenic, unlinked hybrid fitness effects when tracking a rare introgressed marker allele. These hybrid fitness effects quickly decay over time due to repeated backcrossing, enabling a separation-of-timescales approach. Using diffusion and branching process theory in combination with computer simulations, we formalize the intuition behind how hybrid fitness effects affect introgressed alleles. We find that hybrid fitness effects can significantly hinder or boost the fixation probability of introgressed alleles, depending on the relative strength of heterosis and Dobzhansky-Muller incompatibilities effects. We show that the inclusion of a correction factor (α, representing the compounded effects of hybrid fitness effects over time) into classic population genetics theory yields accurate fixation probabilities. Despite having a strong impact on the probability of fixation, hybrid fitness effects only subtly change the distribution of fitness effects of introgressed alleles that reach fixation. Although strong Dobzhansky-Muller incompatibility effects may expedite the loss of introgressed alleles, fixation times are largely unchanged by hybrid fitness effects.


Subject(s)
Genetics, Population , Models, Genetic , Alleles , Hybridization, Genetic , Probability
7.
G3 (Bethesda) ; 12(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36226801

ABSTRACT

Many lizard species face extinction due to worldwide climate change. The Guatemalan Beaded Lizard, Heloderma charlesbogerti, is a member of the Family Helodermatidae that may be particularly imperiled; fewer than 600 mature individuals are believed to persist in the wild. In addition, H. charlesbogerti lizards are phenotypically remarkable. They are large in size, charismatically patterned, and possess a venomous bite. Here, we report the draft genome of the Guatemalan Beaded Lizard using DNA from a wild-caught individual. The assembled genome totals 2.31 Gb in length, similar in size to the genomes of related species. Single-copy orthologs were used to produce a novel molecular phylogeny, revealing that the Guatemalan Beaded Lizard falls into a clade with the Asian Glass Lizard (Anguidae) and in close association with the Komodo Dragon (Varanidae) and the Chinese Crocodile Lizard (Shinisauridae). In addition, we identified 31,411 protein-coding genes within the genome. Of the genes identified, we found 504 that evolved with a differential constraint on the branch leading to the Guatemalan Beaded Lizard. Lastly, we identified a decline in the effective population size of the Guatemalan Beaded Lizard approximately 400,000 years ago, followed by a stabilization before starting to dwindle again 60,000 years ago. The results presented here provide important information regarding a highly endangered, venomous reptile that can be used in future conservation, functional genetic, and phylogenetic analyses.


Subject(s)
Lizards , Humans , Animals , Lizards/genetics , Phylogeny , Population Density , Venoms/genetics , Genome
8.
Eur Urol ; 81(5): 458-462, 2022 05.
Article in English | MEDLINE | ID: mdl-35031163

ABSTRACT

A rare African ancestry-specific germline deletion variant in HOXB13 (X285K, rs77179853) was recently reported in Martinican men with early-onset prostate cancer. Given the role of HOXB13 germline variation in prostate cancer, we investigated the association between HOXB13 X285K and prostate cancer risk in a large sample of 22 361 African ancestry men, including 11 688 prostate cancer cases. The risk allele was present only in men of West African ancestry, with an allele frequency in men that ranged from 0.40% in Ghana and 0.31% in Nigeria to 0% in Uganda and South Africa, with a range of frequencies in men with admixed African ancestry from North America and Europe (0-0.26%). HOXB13 X285K was associated with 2.4-fold increased odds of prostate cancer (95% confidence interval [CI] = 1.5-3.9, p = 2 × 10-4), with greater risk observed for more aggressive and advanced disease (Gleason ≥8: odds ratio [OR] = 4.7, 95% CI = 2.3-9.5, p = 2 × 10-5; stage T3/T4: OR = 4.5, 95% CI = 2.0-10.0, p = 2 × 10-4; metastatic disease: OR = 5.1, 95% CI = 1.9-13.7, p = 0.001). We estimated that the allele arose in West Africa 1500-4600 yr ago. Further analysis is needed to understand how the HOXB13 X285K variant impacts the HOXB13 protein and function in the prostate. Understanding who carries this mutation may inform prostate cancer screening in men of West African ancestry. PATIENT SUMMARY: A rare African ancestry-specific germline deletion in HOXB13, found only in men of West African ancestry, was reported to be associated with an increased risk of overall and advanced prostate cancer. Understanding who carries this mutation may help inform screening for prostate cancer in men of West African ancestry.


Subject(s)
Early Detection of Cancer , Prostatic Neoplasms , Case-Control Studies , Genetic Predisposition to Disease , Germ Cells/pathology , Germ-Line Mutation , Homeodomain Proteins/genetics , Humans , Male , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
9.
Blood Adv ; 5(5): 1259-1272, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33651101

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe bacterial infections. Although it is well known that neutrophils are critical innate immune cells facilitating the early defense, the underlying phenotypical and functional changes in neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract infection with uropathogenic Escherichia coli. Bioinformatic analyses of the neutrophil proteome revealed increased expression of proteins associated with interferon signaling and decreased protein expression associated with granule composition and neutrophil migration. Functional experiments validated these findings by showing reduced levels of myeloperoxidase and acidification of neutrophil granules after ex vivo phagocytosis of bacteria. Pathway enrichment analysis indicated decreased expression of molecules critical for neutrophil recruitment, and migration of neutrophils into the infected urinary bladder was significantly reduced. These altered migratory properties of neutrophils were also associated with reduced expression of CD62L and CXCR4 and correlated with an increased incidence of infections in patients with CLL. In conclusion, this study describes a molecular signature of neutrophils through proteomic, bioinformatic, and functional analyses that are linked to a reduced migratory ability, potentially leading to increased bacterial infections in patients with CLL.


Subject(s)
Bacterial Infections , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Computational Biology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice , Neutrophils , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL