Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(9): e2214165120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802435

ABSTRACT

Viruses produce more viruses by manipulating the metabolic and replication systems of their host cells. Many have acquired metabolic genes from ancestral hosts and use the encoded enzymes to subvert host metabolism. The polyamine spermidine is required for bacteriophage and eukaryotic virus replication, and herein, we have identified and functionally characterized diverse phage- and virus-encoded polyamine metabolic enzymes and pathways. These include pyridoxal 5'-phosphate (PLP)-dependent ornithine decarboxylase (ODC), pyruvoyl-dependent ODC and arginine decarboxylase (ADC), arginase, S-adenosylmethionine decarboxylase (AdoMetDC/speD), spermidine synthase, homospermidine synthase, spermidine N-acetyltransferase, and N-acetylspermidine amidohydrolase. We identified homologs of the spermidine-modified translation factor eIF5a encoded by giant viruses of the Imitervirales. Although AdoMetDC/speD is prevalent among marine phages, some homologs have lost AdoMetDC activity and have evolved into pyruvoyl-dependent ADC or ODC. The pelagiphages that encode the pyruvoyl-dependent ADCs infect the abundant ocean bacterium Candidatus Pelagibacter ubique, which we have found encodes a PLP-dependent ODC homolog that has evolved into an ADC, indicating that infected cells would contain both PLP- and pyruvoyl-dependent ADCs. Complete or partial spermidine or homospermidine biosynthetic pathways are found encoded in the giant viruses of the Algavirales and Imitervirales, and in addition, some viruses of the Imitervirales can release spermidine from the inactive N-acetylspermidine. In contrast, diverse phages encode spermidine N-acetyltransferase that can sequester spermidine into its inactive N-acetyl form. Together, the virome-encoded enzymes and pathways for biosynthesis and release or biochemical sequestration of spermidine or its structural analog homospermidine consolidate and expand evidence supporting an important and global role of spermidine in virus biology.


Subject(s)
Polyamines , Spermidine , Polyamines/metabolism , Spermidine/metabolism , Ornithine Decarboxylase/genetics , Acetyltransferases
2.
J Biol Chem ; 300(5): 107281, 2024 May.
Article in English | MEDLINE | ID: mdl-38588807

ABSTRACT

Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.


Subject(s)
Bacteria , Bacterial Proteins , Spermidine Synthase , Spermine Synthase , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Spermidine/metabolism , Spermidine/analogs & derivatives , Spermidine/biosynthesis , Spermidine Synthase/metabolism , Spermidine Synthase/genetics , Spermine/metabolism , Spermine/analogs & derivatives , Spermine/biosynthesis , Spermine Synthase/metabolism , Spermine Synthase/genetics , Polyamines/metabolism , Alkyl and Aryl Transferases/biosynthesis , Alkyl and Aryl Transferases/genetics , Agmatine/chemistry , Agmatine/metabolism
3.
Biochem J ; 481(18): 1241-1253, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39230569

ABSTRACT

The only known pathway for biosynthesis of the polyamine norspermidine starts from aspartate ß-semialdehyde to form the diamine 1,3-diaminopropane, which is then converted to norspermidine via a carboxynorspermidine intermediate. This pathway is found primarily in the Vibrionales order of the γ-Proteobacteria. However, norspermidine is also found in other species of bacteria and archaea, and in diverse single-celled eukaryotes, chlorophyte algae and plants that do not encode the known norspermidine biosynthetic pathway. We reasoned that products of polyamine catabolism could be an alternative route to norspermidine production. 1,3-diaminopropane is formed from terminal catabolism of spermine and spermidine, and norspermidine can be formed from catabolism of thermospermine. We found that the single-celled chlorophyte alga Chlamydomonas reinhardtii thermospermine synthase (CrACL5) did not aminopropylate exogenously-derived 1,3-diaminopropane efficiently when expressed in Escherichia coli. In contrast, it completely converted all E. coli native spermidine to thermospermine. Co-expression in E. coli of the polyamine oxidase 5 from lycophyte plant Selaginella lepidophylla (SelPAO5), together with the CrACL5 thermospermine synthase, converted almost all thermospermine to norspermidine. Although CrACL5 was efficient at aminopropylating norspermidine to form tetraamine norspermine, SelPAO5 oxidizes norspermine back to norspermidine, with the balance of flux being inclined fully to norspermine oxidation. The steady-state polyamine content of E. coli co-expressing thermospermine synthase CrACL5 and polyamine oxidase SelPAO5 was an almost total replacement of spermidine by norspermidine. We have recapitulated a potential hybrid biosynthetic-catabolic pathway for norspermidine production in E. coli, which could explain norspermidine accumulation in species that do not encode the known aspartate ß-semialdehyde-dependent pathway.


Subject(s)
Spermidine , Spermidine/metabolism , Spermidine/analogs & derivatives , Spermidine/biosynthesis , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Biosynthetic Pathways , Escherichia coli/metabolism , Escherichia coli/genetics , Spermine/metabolism , Spermine/analogs & derivatives
4.
Proc Natl Acad Sci U S A ; 119(51): e2213116119, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36512492

ABSTRACT

New antimicrobials are needed for the treatment of extensively drug-resistant Acinetobacter baumannii. The de novo pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated drug target for malaria and human autoimmune diseases. We provide genetic evidence that A. baumannii DHODH (AbDHODH) is essential for bacterial survival in rodent infection models. We chemically validate the target by repurposing a unique library of ~450 triazolopyrimidine/imidazopyrimidine analogs developed for our malaria DHODH program to identify 21 compounds with submicromolar activity on AbDHODH. The most potent (DSM186, DHODH IC50 28 nM) had a minimal inhibitory concentration of ≤1 µg/ml against geographically diverse A. baumannii strains, including meropenem-resistant isolates. A structurally related analog (DSM161) with a long in vivo half-life conferred significant protection in the neutropenic mouse thigh infection model. Encouragingly, the development of resistance to these compounds was not identified in vitro or in vivo. Lastly, the X-ray structure of AbDHODH bound to DSM186 was solved to 1.4 Å resolution. These data support the potential of AbDHODH as a drug target for the development of antimicrobials for the treatment of A. baumannii and potentially other high-risk bacterial infections.


Subject(s)
Acinetobacter baumannii , Humans , Mice , Animals , Dihydroorotate Dehydrogenase , Microbial Sensitivity Tests , Meropenem , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
5.
J Biol Chem ; 299(8): 105005, 2023 08.
Article in English | MEDLINE | ID: mdl-37399976

ABSTRACT

S-adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota, and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.


Subject(s)
Adenosylmethionine Decarboxylase , Carboxy-Lyases , Adenosylmethionine Decarboxylase/genetics , Adenosylmethionine Decarboxylase/metabolism , Archaea/genetics , Archaea/metabolism , Ornithine , Phylogeny , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Polyamines/metabolism , Bacteria/metabolism , Ornithine Decarboxylase/metabolism , Arginine/genetics
6.
J Biol Chem ; 297(4): 101219, 2021 10.
Article in English | MEDLINE | ID: mdl-34560100

ABSTRACT

Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.


Subject(s)
Archaeal Proteins , Bacteria , Bacterial Proteins , Biogenic Polyamines , Carboxy-Lyases , Euryarchaeota , Evolution, Molecular , Ornithine Decarboxylase , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biogenic Polyamines/biosynthesis , Biogenic Polyamines/chemistry , Carboxy-Lyases/chemistry , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Euryarchaeota/enzymology , Euryarchaeota/genetics , Ornithine Decarboxylase/chemistry , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
J Biol Chem ; 296: 100146, 2021.
Article in English | MEDLINE | ID: mdl-33277357

ABSTRACT

The siderophore rhizoferrin (N1,N4-dicitrylputrescine) is produced in fungi and bacteria to scavenge iron. Putrescine-producing bacterium Ralstonia pickettii synthesizes rhizoferrin and encodes a single nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. From biosynthetic logic, we hypothesized that this single enzyme is sufficient for rhizoferrin biosynthesis. We confirmed this by expression of R. pickettii NIS synthetase in Escherichia coli, resulting in rhizoferrin production. This was further confirmed in vitro using the recombinant NIS synthetase, synthesizing rhizoferrin from putrescine and citrate. Heterologous expression of homologous lbtA from Legionella pneumophila, required for rhizoferrin biosynthesis in that species, produced siderophore activity in E. coli. Rhizoferrin is also synthesized by Francisella tularensis and Francisella novicida, but unlike R. pickettii or L. pneumophila, Francisella species lack putrescine biosynthetic pathways because of genomic decay. Francisella encodes a NIS synthetase FslA/FigA and an ornithine decarboxylase homolog FslC/FigC, required for rhizoferrin biosynthesis. Ornithine decarboxylase produces putrescine from ornithine, but we show here in vitro that FigA synthesizes N-citrylornithine, and FigC is an N-citrylornithine decarboxylase that together synthesize rhizoferrin without using putrescine. We co-expressed F. novicida figA and figC in E. coli and produced rhizoferrin. A 2.1 Å X-ray crystal structure of the FigC N-citrylornithine decarboxylase reveals how the larger substrate is accommodated and how active site residues have changed to recognize N-citrylornithine. FigC belongs to a new subfamily of alanine racemase-fold PLP-dependent decarboxylases that are not involved in polyamine biosynthesis. These data reveal a natural product biosynthetic workaround that evolved to bypass a missing precursor and re-establish it in the final structure.


Subject(s)
Bacterial Proteins/metabolism , Ferric Compounds/metabolism , Iron/metabolism , Peptide Synthases/metabolism , Putrescine/metabolism , Ralstonia pickettii/enzymology , Siderophores/metabolism , Citrates/metabolism , Francisella/enzymology , Legionella pneumophila/enzymology
8.
PLoS Pathog ; 14(10): e1007404, 2018 10.
Article in English | MEDLINE | ID: mdl-30365568

ABSTRACT

Polyamines are essential for cell growth of eukaryotes including the etiologic agent of human African trypanosomiasis (HAT), Trypanosoma brucei. In trypanosomatids, a key enzyme in the polyamine biosynthetic pathway, S-adenosylmethionine decarboxylase (TbAdoMetDC) heterodimerizes with a unique catalytically-dead paralog called prozyme to form the active enzyme complex. In higher eukaryotes, polyamine metabolism is subject to tight feedback regulation by spermidine-dependent mechanisms that are absent in trypanosomatids. Instead, in T. brucei an alternative regulatory strategy based on TbAdoMetDC prozyme has evolved. We previously demonstrated that prozyme protein levels increase in response to loss of TbAdoMetDC activity. Herein, we show that prozyme levels are under translational control by monitoring incorporation of deuterated leucine into nascent prozyme protein. We furthermore identify pathway factors that regulate prozyme mRNA translation. We find evidence for a regulatory feedback mechanism in which TbAdoMetDC protein and decarboxylated AdoMet (dcAdoMet) act as suppressors of prozyme translation. In TbAdoMetDC null cells expressing the human AdoMetDC enzyme, prozyme levels are constitutively upregulated. Wild-type prozyme levels are restored by complementation with either TbAdoMetDC or an active site mutant, suggesting that TbAdoMetDC possesses an enzyme activity-independent function that inhibits prozyme translation. Depletion of dcAdoMet pools by three independent strategies: inhibition/knockdown of TbAdoMetDC, knockdown of AdoMet synthase, or methionine starvation, each cause prozyme upregulation, providing independent evidence that dcAdoMet functions as a metabolic signal for regulation of the polyamine pathway in T. brucei. These findings highlight a potential regulatory paradigm employing enzymes and pseudoenzymes that may have broad implications in biology.


Subject(s)
Adenosylmethionine Decarboxylase/metabolism , Enzyme Activators/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , S-Adenosylmethionine/pharmacology , Trypanosoma brucei brucei/enzymology , Trypanosomiasis/enzymology , Adenosylmethionine Decarboxylase/genetics , Humans , Protein Subunits , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics , Trypanosomiasis/drug therapy , Trypanosomiasis/parasitology
9.
J Biol Chem ; 293(48): 18746-18756, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30333232

ABSTRACT

Polyamines are polycationic organic amines that are required for all eukaryotic life, exemplified by the polyamine spermidine, which plays an essential role in translation. They also play more specialized roles that differ across species, and their chemical versatility has been fully exploited during the evolution of protozoan pathogens. These eukaryotic pathogens, which cause some of the most globally widespread infectious diseases, have acquired species-specific polyamine-derived metabolites with essential cellular functions and have evolved unique mechanisms that regulate their core polyamine biosynthetic pathways. Many of these parasitic species have lost enzymes and or transporters from the polyamine metabolic pathway that are found in the human host. These pathway differences have prompted drug discovery efforts to target the parasite polyamine pathways, and indeed, the only clinically approved drug targeting the polyamine biosynthetic pathway is used to manage human African trypanosomiasis. This Minireview will primarily focus on polyamine metabolism and function in Trypanosoma, Leishmania, and Plasmodium species, which are the causative agents of human African trypanosomiasis (HAT) and Chagas disease, Leishmaniasis, and malaria, respectively. Aspects of polyamine metabolism across a diverse group of protozoan pathogens will also be explored.


Subject(s)
Leishmania/metabolism , Leishmaniasis/parasitology , Malaria/parasitology , Plasmodium/metabolism , Polyamines/metabolism , Trypanosoma/metabolism , Trypanosomiasis, African/parasitology , Animals , Humans , Leishmania/genetics , Plasmodium/genetics , Trypanosoma/genetics
10.
PLoS Pathog ; 12(11): e1006010, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27820863

ABSTRACT

The human pathogenic parasite Trypanosoma brucei possess both de novo and salvage routes for the biosynthesis of pyrimidine nucleotides. Consequently, they do not require salvageable pyrimidines for growth. Thymidine kinase (TK) catalyzes the formation of dTMP and dUMP and is one of several salvage enzymes that appear redundant to the de novo pathway. Surprisingly, we show through analysis of TK conditional null and RNAi cells that TK is essential for growth and for infectivity in a mouse model, and that a catalytically active enzyme is required for its function. Unlike humans, T. brucei and all other kinetoplastids lack dCMP deaminase (DCTD), which provides an alternative route to dUMP formation. Ectopic expression of human DCTD resulted in full rescue of the RNAi growth phenotype and allowed for selection of viable TK null cells. Metabolite profiling by LC-MS/MS revealed a buildup of deoxypyrimidine nucleosides in TK depleted cells. Knockout of cytidine deaminase (CDA), which converts deoxycytidine to deoxyuridine led to thymidine/deoxyuridine auxotrophy. These unexpected results suggested that T. brucei encodes an unidentified 5'-nucleotidase that converts deoxypyrimidine nucleotides to their corresponding nucleosides, leading to their dead-end buildup in TK depleted cells at the expense of dTTP pools. Bioinformatics analysis identified several potential candidate genes that could encode 5'-nucleotidase activity including an HD-domain protein that we show catalyzes dephosphorylation of deoxyribonucleotide 5'-monophosphates. We conclude that TK is essential for synthesis of thymine nucleotides regardless of whether the nucleoside precursors originate from the de novo pathway or through salvage. Reliance on TK in the absence of DCTD may be a shared vulnerability among trypanosomatids and may provide a unique opportunity to selectively target a diverse group of pathogenic single-celled eukaryotes with a single drug.


Subject(s)
Nucleotides/biosynthesis , Thymidine Kinase/metabolism , Trypanosoma brucei brucei/enzymology , Trypanosomiasis, African/enzymology , Trypanosomiasis, African/parasitology , Animals , Blotting, Western , Chromatography, Liquid , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Pyrimidines/metabolism , Tandem Mass Spectrometry , Transfection
11.
Bioorg Med Chem ; 25(20): 5433-5440, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28807574

ABSTRACT

We describe our efforts to improve the pharmacokinetic properties of a mechanism-based suicide inhibitor of the polyamine biosynthetic enzyme S-adenosylmethionine decarboxylase (AdoMetDC), essential for the survival of the eukaryotic parasite Trypanosoma brucei responsible for Human African Trypanosomiasis (HAT). The lead compound, 5'-(((Z)-4-amino-2-butenyl)methylamino)-5'-deoxyadenosine (1, also known as MDL 73811, or AbeAdo), has curative efficacy at a low dosage in a hemolymphatic model of HAT but displayed no demonstrable effect in a mouse model of the CNS stage of HAT due to poor blood-brain barrier permeation. Therefore, we prepared and evaluated an extensive set of analogs with modifications in the aminobutenyl side chain, the 5'-amine, the ribose, and the purine fragments. Although we gained valuable structure-activity insights from this comprehensive dataset, we did not gain traction on improving the prospects for CNS penetration while retaining the potent antiparasitic activity and metabolic stability of the lead compound 1.


Subject(s)
Adenosylmethionine Decarboxylase/antagonists & inhibitors , Deoxyadenosines/pharmacology , Enzyme Inhibitors/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Adenosylmethionine Decarboxylase/metabolism , Animals , Deoxyadenosines/chemical synthesis , Deoxyadenosines/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Molecular Conformation , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
12.
J Biol Chem ; 290(32): 19987-98, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26082486

ABSTRACT

The eukaryotic protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis. Polyamine biosynthesis is essential in T. brucei, and the polyamine spermidine is required for synthesis of a novel cofactor called trypanothione and for deoxyhypusine modification of eukaryotic translation initiation factor 5A (eIF5A). eIF5A promotes translation of proteins containing polyprolyl tracts in mammals and yeast. To evaluate the function of eIF5A in T. brucei, we used RNA interference (RNAi) to knock down eIF5A levels and found that it is essential for T. brucei growth. The RNAi-induced growth defect was complemented by expression of wild-type human eIF5A but not by a Lys-50 mutant that blocks modification by deoxyhypusine. Bioinformatics analysis showed that 15% of the T. brucei proteome contains 3 or more consecutive prolines and that actin-related proteins and cysteine proteases were highly enriched in the group. Steady-state protein levels of representative proteins containing 9 consecutive prolines that are involved in actin assembly (formin and CAP/Srv2p) were significantly reduced by knockdown of eIF5A. Several T. brucei polyprolyl proteins are involved in flagellar assembly. Knockdown of TbeIF5A led to abnormal cell morphologies and detached flagella, suggesting that eIF5A is important for translation of proteins needed for these processes. Potential specialized functions for eIF5A in T. brucei in translation of variable surface glycoproteins were also uncovered. Inhibitors of deoxyhypusination would be expected to cause a pleomorphic effect on multiple cell processes, suggesting that deoxyhypusine/hypusine biosynthesis could be a promising drug target in not just T. brucei but in other eukaryotic pathogens.


Subject(s)
Lysine/analogs & derivatives , Peptide Initiation Factors/metabolism , Protein Processing, Post-Translational , Protozoan Proteins/metabolism , RNA, Messenger/metabolism , RNA, Protozoan/metabolism , RNA-Binding Proteins/metabolism , Trypanosoma brucei brucei/metabolism , Amino Acid Sequence , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Flagella/genetics , Flagella/metabolism , Flagella/ultrastructure , Gene Knockdown Techniques , Humans , Lysine/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Molecular Sequence Data , Peptide Initiation Factors/antagonists & inhibitors , Peptide Initiation Factors/genetics , Peptides/metabolism , Proteome/genetics , Proteome/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Protozoan/antagonists & inhibitors , RNA, Protozoan/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/ultrastructure , Eukaryotic Translation Initiation Factor 5A
13.
Mol Microbiol ; 97(5): 1006-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26043892

ABSTRACT

The causative agent of human African trypanosomiasis, Trypanosoma brucei, lacks de novo purine biosynthesis and depends on purine salvage from the host. The purine salvage pathway is redundant and contains two routes to guanosine-5'-monophosphate (GMP) formation: conversion from xanthosine-5'-monophosphate (XMP) by GMP synthase (GMPS) or direct salvage of guanine by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). We show recombinant T. brucei GMPS efficiently catalyzes GMP formation. Genetic knockout of GMPS in bloodstream parasites led to depletion of guanine nucleotide pools and was lethal. Growth of gmps null cells was only rescued by supraphysiological guanine concentrations (100 µM) or by expression of an extrachromosomal copy of GMPS. Hypoxanthine was a competitive inhibitor of guanine rescue, consistent with a common uptake/metabolic conversion mechanism. In mice, gmps null parasites were unable to establish an infection demonstrating that GMPS is essential for virulence and that plasma guanine is insufficient to support parasite purine requirements. These data validate GMPS as a potential therapeutic target for treatment of human African trypanosomiasis. The ability to strategically inhibit key metabolic enzymes in the purine pathway unexpectedly bypasses its functional redundancy by exploiting both the nature of pathway flux and the limited nutrient environment of the parasite's extracellular niche.


Subject(s)
Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Purines/metabolism , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/physiology , Adenosine/metabolism , Animals , Binding Sites , Cell Cycle , Gene Knockout Techniques , Guanine/metabolism , Guanine/pharmacology , Guanosine Monophosphate/metabolism , Humans , Hypoxanthine/metabolism , Hypoxanthine/pharmacology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Mice, Inbred C57BL , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/pathogenicity , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/therapy
14.
J Chem Inf Model ; 56(3): 548-62, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26915022

ABSTRACT

Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a key enzyme in the de novo pyrimidine biosynthesis pathway, which the Plasmodium falciparum relies on exclusively for survival, has emerged as a promising target for antimalarial drugs. In an effort to discover new and potent PfDHODH inhibitors, 3D-QSAR pharmacophore models were developed based on the structures of known PfDHODH inhibitors and the validated Hypo1 model was used as a 3D search query for virtual screening of the National Cancer Institute database. The virtual hit compounds were further filtered based on molecular docking and Molecular Mechanics/Generalized Born Surface Area binding energy calculations. The combination of the pharmacophore and structure-based virtual screening resulted in the identification of nine new compounds that showed >25% inhibition of PfDHODH at a concentration of 10 µM, three of which exhibited IC50 values in the range of 0.38-20 µM. The most active compound, NSC336047, displayed species-selectivity for PfDHODH over human DHODH and inhibited parasite growth with an IC50 of 26 µM. In addition to this, 13 compounds inhibited parasite growth with IC50 values of ≤ 50 µM, 4 of which showed IC50 values in the range of 5-12 µM. These compounds could be further explored in the identification and development of more potent PfDHODH and parasite growth inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Animals , Dihydroorotate Dehydrogenase , Humans , Plasmodium falciparum/enzymology , Quantitative Structure-Activity Relationship
15.
Nature ; 465(7296): 311-5, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20485428

ABSTRACT

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library-many of which showed potent in vitro activity against drug-resistant P. falciparum strains-and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Subject(s)
Antimalarials/analysis , Antimalarials/pharmacology , Drug Discovery , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Animals , Antimalarials/isolation & purification , Cell Line , Drug Evaluation, Preclinical , Drug Resistance/drug effects , Drug Therapy, Combination , Erythrocytes/drug effects , Erythrocytes/parasitology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice , Phenotype , Phylogeny , Plasmodium falciparum/metabolism , Reproducibility of Results , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
16.
Antimicrob Agents Chemother ; 59(1): 686-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25331708

ABSTRACT

Atovaquone is a component of Malarone, a widely prescribed antimalarial combination, that targets malaria respiration. Here we show that parasites with high-level resistance to an inhibitor of dihydroorotate dehydrogenase demonstrate unexpected atovaquone tolerance. Fortunately, the tolerance is diminished with proguanil, the second partner in Malarone. It is important to understand such "genetic cross talk" between respiration and pyrimidine biosynthesis since many antimalarial drug development programs target these two seemingly independent pathways.


Subject(s)
Antimalarials/pharmacology , Atovaquone/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Dihydroorotate Dehydrogenase , Drug Combinations , Drug Resistance , Parasitic Sensitivity Tests , Proguanil/pharmacology
17.
PLoS Pathog ; 9(5): e1003375, 2013.
Article in English | MEDLINE | ID: mdl-23717205

ABSTRACT

Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH) inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.


Subject(s)
DNA, Protozoan , Drug Resistance/genetics , Oxidoreductases Acting on CH-CH Group Donors , Plasmodium falciparum , Ploidies , Protozoan Proteins , Animals , Culicidae/parasitology , DNA, Protozoan/biosynthesis , DNA, Protozoan/genetics , Dihydroorotate Dehydrogenase , Genetic Loci/genetics , Humans , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
18.
Eukaryot Cell ; 13(5): 614-24, 2014 May.
Article in English | MEDLINE | ID: mdl-24610661

ABSTRACT

Human African trypanosomiasis (HAT) is a debilitating and fatal vector-borne disease. Polyamine biosynthesis is the target of one of the key drugs (eflornithine) used for the treatment of late-stage disease, suggesting that the pathway might be exploited for the identification of additional drug targets. The polyamine spermidine is required in trypanosomatid parasites for formation of a unique redox cofactor termed trypanothione, which is formed from the conjugation of glutathione to spermidine. Here we characterize recombinant Trypanosoma brucei glutathione synthetase (TbGS) and show that depletion of TbGS in blood-form parasites using a regulated knockout strategy leads to loss of trypanothione and to cell death as quantified by fluorescence-activated cell sorter (FACS) analysis. These data suggest that >97% depletion of TbGS is required before trypanothione is depleted and cell growth arrest is observed. Exogenous glutathione was able to partially compensate for the loss of TbGS, suggesting that parasites are able to transport intact glutathione. Finally, reduced expression of TbGS leads to increased levels of upstream glutathione biosynthetic enzymes and decreased expression of polyamine biosynthetic enzymes, providing evidence that the cells cross regulate the two branches of the trypanothione biosynthetic pathway to maintain spermidine and trypanothione homeostasis.


Subject(s)
Glutathione Synthase/genetics , Glutathione Synthase/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/enzymology , Cell Cycle Checkpoints , Cell Death , Gene Knockout Techniques , Glutathione/genetics , Humans , Polyamines/metabolism , Trypanosoma brucei brucei/cytology , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/parasitology
19.
Eukaryot Cell ; 13(4): 504-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24562907

ABSTRACT

Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and ß) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , RNA, Messenger/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Cell Cycle/drug effects , Cytosol/drug effects , Cytosol/enzymology , Drug Discovery , Fatty Alcohols/pharmacology , Gene Expression Regulation , Gene Knockdown Techniques , Mitochondria/drug effects , Mitochondria/enzymology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/genetics
20.
J Biol Chem ; 288(7): 5232-40, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23288847

ABSTRACT

Human African trypanosomiasis is caused by a single-celled protozoan parasite, Trypanosoma brucei. Polyamine biosynthesis is a clinically validated target for the treatment of human African trypanosomiasis. Metabolic differences between the parasite and the human polyamine pathway are thought to contribute to species selectivity of pathway inhibitors. S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in the production of the polyamine spermidine. We previously showed that trypanosomatid AdoMetDC differs from other eukaryotic enzymes in that it is regulated by heterodimer formation with a catalytically dead paralog, designated prozyme, which binds with high affinity to the enzyme and increases its activity by up to 10(3)-fold. Herein, we examine the role of specific residues involved in AdoMetDC activation by prozyme through deletion and site-directed mutagenesis. Results indicate that 12 key amino acids at the N terminus of AdoMetDC are essential for prozyme-mediated activation with Leu-8, Leu-10, Met-11, and Met-13 identified as the key residues. These N-terminal residues are fully conserved in the trypanosomatids but are absent from other eukaryotic homologs lacking the prozyme mechanism, suggesting co-evolution of these residues with the prozyme mechanism. Heterodimer formation between AdoMetDC and prozyme was not impaired by mutation of Leu-8 and Leu-10 to Ala, suggesting that these residues are involved in a conformational change that is essential for activation. Our findings provide the first insight into the mechanisms that influence catalytic regulation of AdoMetDC and may have potential implications for the development of new inhibitors against this enzyme.


Subject(s)
Adenosylmethionine Decarboxylase/chemistry , Trypanosoma brucei brucei/enzymology , Alanine/chemistry , Allosteric Site , Amino Acid Sequence , Catalysis , Dimerization , Escherichia coli/metabolism , Humans , Kinetics , Models, Biological , Molecular Sequence Data , Peptides/chemistry , Polyamines/chemistry , Protein Conformation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL