Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 371
Filter
Add more filters

Publication year range
1.
Cell ; 168(5): 789-800.e10, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235196

ABSTRACT

The molecular basis of the incomplete penetrance of monogenic disorders is unclear. We describe here eight related individuals with autosomal recessive TIRAP deficiency. Life-threatening staphylococcal disease occurred during childhood in the proband, but not in the other seven homozygotes. Responses to all Toll-like receptor 1/2 (TLR1/2), TLR2/6, and TLR4 agonists were impaired in the fibroblasts and leukocytes of all TIRAP-deficient individuals. However, the whole-blood response to the TLR2/6 agonist staphylococcal lipoteichoic acid (LTA) was abolished only in the index case individual, the only family member lacking LTA-specific antibodies (Abs). This defective response was reversed in the patient, but not in interleukin-1 receptor-associated kinase 4 (IRAK-4)-deficient individuals, by anti-LTA monoclonal antibody (mAb). Anti-LTA mAb also rescued the macrophage response in mice lacking TIRAP, but not TLR2 or MyD88. Thus, acquired anti-LTA Abs rescue TLR2-dependent immunity to staphylococcal LTA in individuals with inherited TIRAP deficiency, accounting for incomplete penetrance. Combined TIRAP and anti-LTA Ab deficiencies underlie staphylococcal disease in this patient.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Lipopolysaccharides/metabolism , Membrane Glycoproteins/deficiency , Receptors, Interleukin-1/deficiency , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Teichoic Acids/metabolism , Adaptive Immunity , Child , Female , Fibroblasts/metabolism , Humans , Immunity, Innate , Lipopolysaccharides/immunology , Macrophages/immunology , Male , Membrane Glycoproteins/analysis , Membrane Glycoproteins/genetics , Monocytes/metabolism , Myeloid Differentiation Factor 88/metabolism , Pedigree , Phagocytes/metabolism , Point Mutation , Protein Isoforms/analysis , Protein Isoforms/genetics , Receptors, Interleukin-1/analysis , Receptors, Interleukin-1/genetics , Staphylococcal Infections/drug therapy , Teichoic Acids/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism
2.
Nat Immunol ; 19(9): 973-985, 2018 09.
Article in English | MEDLINE | ID: mdl-30127434

ABSTRACT

Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c+ conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory TH1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a-/- mice lack cDC2s, have CD4+ T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory TH1* cells.


Subject(s)
Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Dendritic Cells/immunology , Membrane Proteins/metabolism , Mycobacterium Infections/immunology , Mycobacterium bovis/physiology , Mycobacterium tuberculosis/physiology , Th1 Cells/immunology , Tuberculosis/immunology , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Cells, Cultured , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Immunity , Immunologic Memory , Infant , Interferon-gamma/metabolism , Lymphadenopathy , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Mycobacterium Infections/genetics , Vaccination
3.
Nature ; 628(8008): 620-629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509369

ABSTRACT

Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.


Subject(s)
Epstein-Barr Virus Infections , Interleukin-27 , Receptors, Interleukin , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Alleles , B-Lymphocytes/pathology , B-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/therapy , Finland , Gene Frequency , Herpesvirus 4, Human , Homozygote , Infectious Mononucleosis/complications , Infectious Mononucleosis/genetics , Infectious Mononucleosis/therapy , Interleukin-27/immunology , Interleukin-27/metabolism , Loss of Function Mutation , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Treatment Outcome
4.
Nat Immunol ; 17(11): 1291-1299, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27618553

ABSTRACT

Innate lymphoid cells (ILCs) have potent immunological functions in experimental conditions in mice, but their contributions to immunity in natural conditions in humans have remained unclear. We investigated the presence of ILCs in a cohort of patients with severe combined immunodeficiency (SCID). All ILC subsets were absent in patients with SCID who had mutation of the gene encoding the common γ-chain cytokine receptor subunit IL-2Rγ or the gene encoding the tyrosine kinase JAK3. T cell reconstitution was observed in patients with SCID after hematopoietic stem cell transplantation (HSCT), but the patients still had considerably fewer ILCs in the absence of myeloablation than did healthy control subjects, with the exception of rare cases of reconstitution of the ILC1 subset of ILCs. Notably, the ILC deficiencies observed were not associated with any particular susceptibility to disease, with follow-up extending from 7 years to 39 years after HSCT. We thus report here selective ILC deficiency in humans and show that ILCs might be dispensable in natural conditions, if T cells are present and B cell function is preserved.


Subject(s)
Immunity, Innate , Lymphocytes/immunology , Adolescent , Adult , Animals , Biomarkers , Child , Disease Models, Animal , Graft Survival , Hematopoietic Stem Cell Transplantation , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Interleukin Receptor Common gamma Subunit/deficiency , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Janus Kinase 3/deficiency , Lymphocyte Count , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocytes/metabolism , Lymphopenia/blood , Lymphopenia/etiology , Mice , Mice, Knockout , Phenotype , Severe Combined Immunodeficiency/blood , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/metabolism , Severe Combined Immunodeficiency/therapy , Skin/immunology , Skin/pathology
5.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38176734

ABSTRACT

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Subject(s)
Shelterin Complex , Telomerase , Telomere-Binding Proteins , Humans , Biology , Mutation , Shelterin Complex/genetics , Telomerase/genetics , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
6.
Nat Immunol ; 15(12): 1134-42, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25344726

ABSTRACT

Loss of function of the kinase IRAK4 or the adaptor MyD88 in humans interrupts a pathway critical for pathogen sensing and ignition of inflammation. However, patients with loss-of-function mutations in the genes encoding these factors are, unexpectedly, susceptible to only a limited range of pathogens. We employed a systems approach to investigate transcriptome responses following in vitro exposure of patients' blood to agonists of Toll-like receptors (TLRs) and receptors for interleukin 1 (IL-1Rs) and to whole pathogens. Responses to purified agonists were globally abolished, but variable residual responses were present following exposure to whole pathogens. Further delineation of the latter responses identified a narrow repertoire of transcriptional programs affected by loss of MyD88 function or IRAK4 function. Our work introduces the use of a systems approach for the global assessment of innate immune responses and the characterization of human primary immunodeficiencies.


Subject(s)
Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Interleukin-1 Receptor-Associated Kinases/genetics , Mutation , Myeloid Differentiation Factor 88/genetics , Adolescent , Child , Child, Preschool , Cluster Analysis , Female , Gene Expression Profiling , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Infant , Interleukin-1 Receptor-Associated Kinases/immunology , Male , Oligonucleotide Array Sequence Analysis , Primary Immunodeficiency Diseases , Transcriptome
7.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Article in English | MEDLINE | ID: mdl-37793571

ABSTRACT

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Fas-Associated Death Domain Protein , Humans , Apoptosis/genetics , Autoimmune Diseases/genetics , Autoimmune Lymphoproliferative Syndrome/genetics , Comparative Genomic Hybridization , DNA , fas Receptor/genetics , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Germ Cells/pathology , Mutation
8.
Clin Immunol ; 261: 110165, 2024 04.
Article in English | MEDLINE | ID: mdl-38423196

ABSTRACT

Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost » of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.


Subject(s)
Common Variable Immunodeficiency , Siblings , Male , Adult , Humans , Middle Aged , Haploinsufficiency/genetics , DNA Copy Number Variations , NF-kappa B/genetics , Common Variable Immunodeficiency/genetics , Regulatory Sequences, Nucleic Acid , NF-kappa B p50 Subunit/genetics
9.
Br J Haematol ; 204(5): 1899-1907, 2024 May.
Article in English | MEDLINE | ID: mdl-38432067

ABSTRACT

Kabuki syndrome (KS) is now listed in the Human Inborn Errors of Immunity (IEI) Classification. It is a rare disease caused by KMT2D and KDM6A variants, dominated by intellectual disability and characteristic facial features. Recurrently, pathogenic variants are identified in those genes in patients examined for autoimmune cytopenia (AIC), but interpretation remains challenging. This study aims to describe the genetic diagnosis and the clinical management of patients with paediatric-onset AIC and KS. Among 11 patients with AIC and KS, all had chronic immune thrombocytopenic purpura, and seven had Evans syndrome. All had other associated immunopathological manifestations, mainly symptomatic hypogammaglobinaemia. They had a median of 8 (5-10) KS-associated manifestations. Pathogenic variants were detected in KMT2D gene without clustering, during the immunological work-up of AIC in three cases, and the clinical strategy to validate them is emphasized. Eight patients received second-line treatments, mainly rituximab and mycophenolate mofetil. With a median follow-up of 17 (2-31) years, 8/10 alive patients still needed treatment for AIC. First-line paediatricians should be able to recognize and confirm KS in children with ITP or multiple AIC, to provide early appropriate clinical management and specific long-term follow-up. The epigenetic immune dysregulation in KS opens exciting new perspectives.


Subject(s)
Abnormalities, Multiple , DNA-Binding Proteins , Face , Hematologic Diseases , Histone Demethylases , Neoplasm Proteins , Vestibular Diseases , Humans , Vestibular Diseases/genetics , Vestibular Diseases/diagnosis , Child , Face/abnormalities , Female , Male , Child, Preschool , Abnormalities, Multiple/genetics , Adolescent , Histone Demethylases/genetics , Neoplasm Proteins/genetics , Hematologic Diseases/genetics , DNA-Binding Proteins/genetics , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/therapy , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Infant , Thrombocytopenia/genetics , Thrombocytopenia/diagnosis , Thrombocytopenia/etiology , Thrombocytopenia/therapy , Anemia, Hemolytic, Autoimmune/genetics , Anemia, Hemolytic, Autoimmune/diagnosis , Anemia, Hemolytic, Autoimmune/therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/diagnosis , Rituximab/therapeutic use , Mutation , Cytopenia
10.
Nat Immunol ; 13(12): 1178-86, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23104095

ABSTRACT

We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin 1ß (IL-1ß) was compromised in the patients' fibroblasts. By contrast, the patients' mononuclear leukocytes, particularly monocytes, were hyper-responsive to IL-1ß. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1ß responses thus differed between cell types, consistent with the unique association of autoinflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB-dependent IL-1ß responses differently in different cell types.


Subject(s)
Glycogen Storage Disease Type IV/genetics , Hereditary Autoinflammatory Diseases/genetics , Immunologic Deficiency Syndromes/genetics , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/genetics , Bacterial Infections/genetics , Bacterial Infections/immunology , Cell Cycle Proteins/genetics , Cell Line , Fibroblasts/immunology , Fibroblasts/metabolism , Humans , Immunologic Deficiency Syndromes/metabolism , Interleukin-1beta/metabolism , Monocytes/immunology , Monocytes/metabolism , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Repressor Proteins/genetics , Transcription Factors , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
11.
Pediatr Allergy Immunol ; 35(2): e14073, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38351896

ABSTRACT

PURPOSE: We aimed to describe the clinical, immunological, and genetic features of patients with DOCK8 deficiency (DOCK8-Def) in a tertiary care center for children. METHODS: Retrospective chart review of patients' clinical, immunological, and genetic characteristics with DOCK8-Def. Genetic analysis was performed with targeted- or whole-exome sequencing; we also assessed DOCK8 protein expression and a lymphoproliferation assay and analyzed survival by the Kaplan-Meier method. RESULTS: We described 11 patients from 8 unrelated kindreds. The median age at symptoms' onset was 10 months (range 1-54 months). The median follow-up time was 53.4 months (4.8-118.8). All patients presented eczema and recurrent sinopulmonary and cutaneous infections. Besides those symptoms, the most frequent manifestations were bronchiectases (8/11), food allergies (6/11), and severe infections (6/11). Infrequent characteristics were detection of CMV in bronchial lavage, C. parvum-driven sclerosing cholangitis, Takayasu vasculitis, neurological syndromes, pulmonary tuberculosis, and lymphomatoid granulomatosis. CONCLUSION: DOCK8-Def has a broad spectrum of manifestations, including allergy, autoimmunity, inflammation, infection, and cancer. The hallmark of this inborn error of immunity is IEI-associated eczema with eosinophilia and increased IgE. Here, we report six new mutations causing human DOCK8 deficiency and symptoms previously unrecognized to occur in DOCK8-Def. Therefore, an early diagnosis of DOCK8-Def is essential to facilitate an adequate treatment such as HSCT.


Subject(s)
Eczema , Hypersensitivity , Job Syndrome , Child , Humans , Infant , Child, Preschool , Retrospective Studies , Job Syndrome/genetics , Eczema/epidemiology , Eczema/genetics , Mutation , Guanine Nucleotide Exchange Factors/genetics
12.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34261794

ABSTRACT

Lymphoid tissue inducer (LTi) cells are critical for inducing the differentiation of most secondary lymphoid organs (SLOs) in mice. In humans, JAK3 and γc deficiencies result in severe combined immunodeficiency (SCIDs) characterized by an absence of T cells, natural killer cells, innate lymphoid cells (ILCs), and presumably LTi cells. Some of these patients have undergone allogeneic stem cell transplantation (HSCT) in the absence of myeloablation, which leads to donor T cell engraftment, while other leukocyte subsets are of host origin. By using MRI to look for SLOs in nine of these patients 16 to 44 y after HSCT, we discovered that SLOs were exclusively found in the three areas of the abdomen that drain the intestinal tract. A postmortem examination of a child with γc-SCID who had died 3.5 mo after HSCT showed corticomedullary differentiation in the thymus, T cell zones in the spleen, and the appendix, but in neither lymph nodes nor Peyer patches. Tertiary lymphoid organs were observed in the lung. No RAR-related orphan receptor-positive LTi cells could be detected in the existing lymphoid structures. These results suggest that while LTi cells are required for the genesis of most SLOs in humans, SLO in the appendix and in gut-draining areas, as well as tertiary lymphoid organs, can be generated likely by LTi cell-independent mechanisms.


Subject(s)
Lymphoid Tissue/growth & development , Severe Combined Immunodeficiency/immunology , Adolescent , Adult , Female , Humans , Lymphoid Tissue/diagnostic imaging , Lymphoid Tissue/immunology , Magnetic Resonance Imaging , Male , Severe Combined Immunodeficiency/diagnostic imaging , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Spleen/diagnostic imaging , Spleen/growth & development , Spleen/immunology , T-Lymphocytes, Helper-Inducer/immunology , Thymus Gland/diagnostic imaging , Thymus Gland/growth & development , Thymus Gland/immunology , Transplantation, Homologous , Young Adult
13.
J Allergy Clin Immunol ; 152(4): 972-983, 2023 10.
Article in English | MEDLINE | ID: mdl-37343845

ABSTRACT

BACKGROUND: Gain-of-function variants of JAK1 drive a rare immune dysregulation syndrome associated with atopic dermatitis, allergy, and eosinophilia. OBJECTIVES: This study sought to describe the clinical and immunological characteristics associated with a new gain-of-function variant of JAK1 and report the therapeutic efficacy of Janus kinase (JAK) inhibition. METHODS: The investigators identified a family affected by JAK1-associated autoinflammatory disease and performed clinical assessment and immunological monitoring on 9 patients. JAK1 signaling was studied by flow and mass cytometry in patients' cells at basal state or after immune stimulation. A molecular disease signature in the blood was studied at the transcriptomic level. Patients were treated with 1 of 2 JAK inhibitors: either baricitinib or upadacitinib. Clinical, cellular, and molecular response were evaluated over a 2-year period. RESULTS: Affected individuals displayed a syndromic disease with prominent allergy including atopic dermatitis, ichthyosis, arthralgia, chronic diarrhea, disseminated calcifying fibrous tumors, and elevated whole blood histamine levels. A variant of JAK1 localized in the pseudokinase domain was identified in all 9 affected, tested patients. Hyper-phosphorylation of STAT3 was found in 5 of 6 patients tested. Treatment of patients' cells with baricitinib controlled most of the atypical hyper-phosphorylation of STAT3. Administration of baricitinib to patients led to rapid improvement of the disease in all adults and was associated with reduction of systemic inflammation. CONCLUSIONS: Patients with this new JAK1 gain-of-function pathogenic variant displayed very high levels of blood histamine and showed a variable combination of atopy with articular and gastrointestinal manifestations as well as calcifying fibrous tumors. The disease, which appears to be linked to STAT3 hyperactivation, was well controlled under treatment by JAK inhibitors in adult patients.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Neoplasms , Adult , Humans , Janus Kinase Inhibitors/therapeutic use , Dermatitis, Atopic/drug therapy , Histamine , Neoplasms/drug therapy , Janus Kinase 1/genetics
14.
J Allergy Clin Immunol ; 151(6): 1634-1645, 2023 06.
Article in English | MEDLINE | ID: mdl-36638922

ABSTRACT

BACKGROUND: Allogenic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are potentially curative treatments for severe combined immunodeficiency (SCID). Late-onset posttreatment manifestations (such as persistent hepatitis) are not uncommon. OBJECTIVE: We sought to characterize the prevalence and pathophysiology of persistent hepatitis in transplanted SCID patients (SCIDH+) and to evaluate risk factors and treatments. METHODS: We used various techniques (including pathology assessments, metagenomics, single-cell transcriptomics, and cytometry by time of flight) to perform an in-depth study of different tissues from patients in the SCIDH+ group and corresponding asymptomatic similarly transplanted SCID patients without hepatitis (SCIDH-). RESULTS: Eleven patients developed persistent hepatitis (median of 6 years after HSCT or GT). This condition was associated with the chronic detection of enteric viruses (human Aichi virus, norovirus, and sapovirus) in liver and/or stools, which were not found in stools from the SCIDH- group (n = 12). Multiomics analysis identified an expansion of effector memory CD8+ T cells with high type I and II interferon signatures. Hepatitis was associated with absence of myeloablation during conditioning, split chimerism, and defective B-cell function, representing 25% of the 44 patients with SCID having these characteristics. Partially myeloablative retransplantation or GT of patients with this condition (which we have named as "enteric virus infection associated with hepatitis") led to the reconstitution of T- and B-cell immunity and remission of hepatitis in 5 patients, concomitantly with viral clearance. CONCLUSIONS: Enteric virus infection associated with hepatitis is related to chronic enteric viral infection and immune dysregulation and is an important risk for transplanted SCID patients with defective B-cell function.


Subject(s)
Enterovirus Infections , Hematopoietic Stem Cell Transplantation , Hepatitis , Severe Combined Immunodeficiency , Virus Diseases , Humans , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/etiology , CD8-Positive T-Lymphocytes , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Virus Diseases/etiology , Hepatitis/etiology
15.
Clin Infect Dis ; 77(4): 620-628, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37078608

ABSTRACT

BACKGROUND: Metagenomic next-generation sequencing (mNGS) was used to assess patients with primary or secondary immune deficiencies (PIDs and SIDs) who presented with immunopathological conditions related to immunodysregulation. METHODS: Thirty patients with PIDs or SIDs who presented with symptoms related to immunodysregulation and 59 asymptomatic patients with similar PIDs or SIDs were enrolled. mNGS was performed on organ biopsy. Specific Aichi virus (AiV) reverse-transcription polymerase chain reaction (RT-PCR) was used to confirm AiV infection and screen the other patients. In situ hybridization (ISH) assay was done on AiV-infected organs to identify infected cells. Virus genotype was determined by phylogenetic analysis. RESULTS: AiV sequences were detected using mNGS in tissue samples of 5 patients and by RT-PCR in peripheral samples of another patient, all of whom presented with PID and long-lasting multiorgan involvement, including hepatitis, splenomegaly, and nephritis in 4 patients. CD8+ T-cell infiltration was a hallmark of the disease. RT-PCR detected intermittent low viral loads in urine and plasma from infected patients but not from uninfected patients. Viral detection stopped after immune reconstitution obtained by hematopoietic stem cell transplantation. ISH demonstrated the presence of AiV RNA in hepatocytes (n = 1) and spleen tissue (n = 2). AiV belonged to genotype A (n = 2) or B (n = 3). CONCLUSIONS: The similarity of the clinical presentation, the detection of AiV in a subgroup of patients suffering from immunodysregulation, the absence of AiV in asymptomatic patients, the detection of viral genome in infected organs by ISH, and the reversibility of symptoms after treatment argue for AiV causality.


Subject(s)
Kobuvirus , Primary Immunodeficiency Diseases , Virus Diseases , Humans , Kobuvirus/genetics , Phylogeny , Patients
16.
Immunology ; 168(1): 1-17, 2023 01.
Article in English | MEDLINE | ID: mdl-36151885

ABSTRACT

In the past few years, the spectrum of monogenic systemic auto-inflammatory diseases (MSAID) has widely expanded beyond the typical recurrent fever. Immuno-haematological features, as cytopenias, hypogammaglobulinemia, hypereosinophilia, lymphoproliferation and immunodeficiency, have been described in association of several MSAID. The objective of this review was to describe these particular MSAID. MSAID must be suspected in front of immuno-haematological features associated with non-infectious recurrent fever, chronic systemic inflammation, inflammatory cutaneous manifestations, arthritis or inflammatory bowel disease. Genes and cellular mechanisms involved are various but some of them are of special interest. Defects in actine regulation pathway are notably associated with cytopenia and immune deficiency. Because of their frequency, ADA2 deficiency and Vacuoles, E1-Enzyme, X-linked, auto-inflammatory, Somatic (VEXAS) syndrome deserve to be noticed. ADA2 deficiency results in polyarteritis nodosa-like presentation with a wide panel of manifestations including cytopenia(s), lymphoproliferation and immune deficiency. Neutrophilic dermatosis or chondritis associated with macrocytic anaemia or myelodysplasia should lead to screen for VEXAS. Of note, most of MSAID are associated with inflammatory anaemia. We proposed here a clinical and pragmatic approach of MSAID associated with immuno-haematological features.


Subject(s)
Adenosine Deaminase , Immunologic Deficiency Syndromes , Humans , Adenosine Deaminase/genetics , Intercellular Signaling Peptides and Proteins/genetics , Inflammation , Immunologic Deficiency Syndromes/genetics , Mutation
17.
Kidney Int ; 103(1): 70-76, 2023 01.
Article in English | MEDLINE | ID: mdl-36108807

ABSTRACT

Long-term multilineage hematopoietic donor chimerism occurs sporadically in patients who receive a transplanted solid organ enriched in lymphoid tissues such as the intestine or liver. There is currently no evidence for the presence of kidney-resident hematopoietic stem cells in any mammal species. Graft-versus-host-reactive donor T cells promote engraftment of graft-derived hematopoietic stem cells by making space in the bone marrow. Here, we report full (over 99%) multilineage, donor-derived hematopoietic chimerism in a pediatric kidney transplant recipient with syndromic combined immune deficiency that leads to transplant tolerance. Interestingly, we found that the human kidney-derived hematopoietic stem cells took up long-term residence in the recipient's bone marrow and gradually replaced their host counterparts, leading to blood type conversion and full donor chimerism of both lymphoid and myeloid lineages. Thus, our findings highlight the existence of human kidney-derived hematopoietic stem cells with a self-renewal ability able to support multilineage hematopoiesis.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , Humans , Child , Bone Marrow , T-Lymphocytes , Hematopoiesis , Kidney , Hematopoietic Stem Cell Transplantation/adverse effects , Bone Marrow Transplantation , Mammals
18.
J Clin Immunol ; 43(1): 181-191, 2023 01.
Article in English | MEDLINE | ID: mdl-36155879

ABSTRACT

PURPOSE: Hypogammaglobulinemia in a context of lymphoma is usually considered as secondary and prior lymphoma remains an exclusion criterion for a common variable immunodeficiency (CVID) diagnosis. We hypothesized that lymphoma could be the revealing symptom of an underlying primary immunodeficiency (PID), challenging the distinction between primary and secondary hypogammaglobulinemia. METHODS: Within a French cohort of adult patients with hypogammaglobulinemia, patients who developed a lymphoma either during follow-up or before the diagnosis of hypogammaglobulinemia were identified. These two chronology groups were then compared. For patients without previous genetic diagnosis, a targeted next-generation sequencing of 300 PID-associated genes was performed. RESULTS: A total of forty-seven patients had developed 54 distinct lymphomas: non-Hodgkin B cell lymphoma (67%), Hodgkin lymphoma (26%), and T cell lymphoma (7%). In 25 patients, lymphoma developed prior to the diagnosis of hypogammaglobulinemia. In this group of patients, Hodgkin lymphoma was overrepresented compared to the group of patients in whom lymphoma occurred during follow-up (48% versus 9%), whereas MALT lymphoma was absent (0 versus 32%). Despite the histopathological differences, both groups presented with similar characteristics in terms of age at hypogammaglobulinemia diagnosis, consanguinity rate, or severe T cell defect. Overall, genetic analyses identified a molecular diagnosis in 10/47 patients (21%), distributed in both groups and without peculiar gene recurrence. Most of these patients presented with a late onset combined immunodeficiency (LOCID) phenotype. CONCLUSION: Prior or concomitant lymphoma should not be used as an exclusion criteria for CVID diagnosis, and these patients should be investigated accordingly.


Subject(s)
Agammaglobulinemia , Common Variable Immunodeficiency , Hodgkin Disease , Humans , Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/complications , Agammaglobulinemia/diagnosis , Agammaglobulinemia/complications , Hodgkin Disease/diagnosis , T-Lymphocytes , Phenotype
20.
Nat Immunol ; 12(3): 213-21, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21278736

ABSTRACT

Germline mutations in CYBB, the human gene encoding the gp91(phox) subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This 'experiment of nature' indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria.


Subject(s)
Genes, X-Linked , Genetic Predisposition to Disease , Macrophages/immunology , Membrane Glycoproteins/genetics , NADPH Oxidases/genetics , Tuberculosis/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Male , Mutation , NADPH Oxidase 2 , NADPH Oxidases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL