ABSTRACT
OBJECTIVE: A reliable taxonomic identification of species from molecular samples is the first step for many studies. For researchers unfamiliar with programming, running a BLAST analysis, filtering, and organizing results for hundreds of sequences through the BLAST web interface can be difficult. Additionally, sequences deposited in GenBank can have outdated taxonomic identification. The use of reliable Reference Sequences Library (RSL) containing accurate taxonomically-identified sequences facilitates this task. Pending the availability of a RSL with the user, we developed a tool that automates the molecular taxonomic identification of sequences. RESULTS: We developed PARSID, a Python script running through the command-line that automates the routine workflow of blasting an input sequence file against the user's RSL, and retrieves the matches with the highest percentage of identity in five steps. PARSID accepts cut-off parameters and supplementary information in a.csv file for filtering the results. The final output is visualized in a spreadsheet. We tested its functioning using 10 input sequences simulating different situations of the molecular taxonomic identification of sequences against an example RSL containing 25 sequences. Step-by-step instructions and test files are publicly available at https://github.com/kokinide/PARSID.git .
Subject(s)
Databases, Nucleic Acid , Publications , Humans , Gene Library , Research Personnel , WorkflowABSTRACT
Using an integrative taxonomic approach including genetic and morphological data, we formally describe a new microendemic gecko species belonging to the Paroedurabastardi clade, previously referred to as P.bastardi D. We name this taxon currently known from Anja Reserve and Tsaranoro Valley Forest (south-central Madagascar), as P.manongavatosp. nov. The new species differs from other species of the P.bastardi clade by ≥ 12.4% uncorrected p-distance at the mitochondrial 16S rRNA gene and it forms a monophyletic group in the COI mtDNA phylogenetic tree. It lacks haplotype sharing at the nuclear KIAA1239 and CMOS genes with the other species of the same complex, including the syntopic P.rennerae. Given its limited extent of occurrence and high levels of habitat fragmentation linked to forest clearances and fires, we propose the IUCN Red List Category of Critically Endangered, based on the B1ab(iii) criterion. The conservation value of Anja Reserve and Tsaranoro Valley Forest is remarkable. Preserving the remaining deciduous forest habitat is of paramount importance to protect these narrow-range reptile species.
ABSTRACT
Evolution is a key concept of biology, fundamental to understand the world and address important societal problems, but research studies show that it is still not widely understood and accepted. Several factors are known to influence evolution acceptance and understanding, but little information is available regarding the impacts of the curriculum on these aspects. Very few curricula have been examined to assess the coverage of biological evolution. The available studies do not allow comparative analyses, due to the different methodologies employed by the authors. However, such an analysis would be useful for research purposes and for the development of appropriate educational policies to address the problem of a lack of evolution acceptance in some countries. In this paper we describe the steps through which we developed a valid and reliable instrument for curricula analysis known as FACE: "Framework to Assess the Coverage of biological Evolution by school curricula." This framework was developed based on the "Understanding Evolution Conceptual Framework" (UECF). After an initial pilot study, our framework was reformulated based on identified issues and experts' opinions. To generate validity and reliability evidence in support of the framework, it was applied to four European countries' curricula. For each country, a team of a minimum of two national and two foreign coders worked independently to assess the curriculum using this framework for content analysis. Reliability evidence was estimated using Krippendorf's alpha and resulted in appropriate values for coding the examined curricula. Some issues that coders faced during the analysis were discussed and, to ensure better reliability for future researchers, additional guidelines and one extra category were included in the framework. The final version of the framework includes six categories and 34 subcategories. FACE is a useful tool for the analysis and the comparison of curricula and school textbooks regarding the coverage of evolution, and such results can guide curricula development.