ABSTRACT
The molecular basis for the propensity of a small number of environmental proteins to provoke allergic responses is largely unknown. Herein, we report that mite group 13 allergens of the fatty acid-binding protein (FABP) family are sensed by an evolutionarily conserved acute-phase protein, serum amyloid A1 (SAA1), that promotes pulmonary type 2 immunity. Mechanistically, SAA1 interacted directly with allergenic mite FABPs (Der p 13 and Blo t 13). The interaction between mite FABPs and SAA1 activated the SAA1-binding receptor, formyl peptide receptor 2 (FPR2), which drove the epithelial release of the type-2-promoting cytokine interleukin (IL)-33 in a SAA1-dependent manner. Importantly, the SAA1-FPR2-IL-33 axis was upregulated in nasal epithelial cells from patients with chronic rhinosinusitis. These findings identify an unrecognized role for SAA1 as a soluble pattern recognition receptor for conserved FABPs found in common mite allergens that initiate type 2 immunity at mucosal surfaces.
Subject(s)
Asthma/immunology , Rhinitis, Allergic/immunology , Serum Amyloid A Protein/metabolism , Signal Transduction/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Asthma/pathology , Cells, Cultured , Disease Models, Animal , Epithelial Cells , Fatty Acid-Binding Proteins/immunology , Female , Humans , Immunity, Humoral , Immunity, Innate , Interleukin-33/metabolism , Lung/cytology , Lung/immunology , Lung/pathology , Male , Mice , Mice, Knockout , Middle Aged , Primary Cell Culture , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Rhinitis, Allergic/pathology , Serum Amyloid A Protein/genetics , Up-Regulation , Young AdultABSTRACT
RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.
Subject(s)
Actins/metabolism , B-Lymphocytes/immunology , Cytoskeleton/metabolism , DNA-Binding Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Immunologic Deficiency Syndromes/genetics , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , Adolescent , Angiogenesis Inhibitors/pharmacology , B-Lymphocytes/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/genetics , Child , Cytotoxicity, Immunologic/genetics , DNA Mutational Analysis , Dyneins/metabolism , Female , HEK293 Cells , Humans , Immunoglobulin Class Switching/genetics , Immunologic Deficiency Syndromes/drug therapy , Jurkat Cells , Killer Cells, Natural/drug effects , Lenalidomide , Male , Mutation/genetics , Pedigree , RNA, Small Interfering/genetics , T-Lymphocytes/drug effects , Thalidomide/analogs & derivatives , Thalidomide/pharmacologyABSTRACT
BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).
Subject(s)
Actins , Anemia , Guanine Nucleotide Exchange Factors , Inflammation , Animals , Humans , Mice , Actins/genetics , Actins/metabolism , Anemia/etiology , Anemia/genetics , Disease Models, Animal , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Hematopoiesis , Inflammation/etiology , Inflammation/genetics , Zebrafish/genetics , Zebrafish/metabolismABSTRACT
BACKGROUND: SARS-CoV-2 has triggered a pandemic and contributes to long-lasting morbidity. Several studies have investigated immediate cellular and humoral immune responses during acute infection. However, little is known about long-term effects of COVID-19 on the immune system. METHODS: We performed a longitudinal investigation of cellular and humoral immune parameters in 106 non-vaccinated subjects ten weeks (10 w) and ten months (10 m) after their first SARS-CoV-2 infection. Peripheral blood immune cells were analyzed by multiparametric flow cytometry, serum cytokines were examined by multiplex technology. Antibodies specific for the Spike protein (S), the receptor-binding domain (RBD) and the nucleocapsid protein (NC) were determined. All parameters measured 10 w and 10 m after infection were compared with those of a matched, noninfected control group (n = 98). RESULTS: Whole blood flow cytometric analyses revealed that 10 m after COVID-19, convalescent patients compared to controls had reduced absolute granulocyte, monocyte, and lymphocyte counts, involving T, B, and NK cells, in particular CD3+CD45RA+CD62L+CD31+ recent thymic emigrant T cells and non-class-switched CD19+IgD+CD27+ memory B cells. Cellular changes were associated with a reversal from Th1- to Th2-dominated serum cytokine patterns. Strong declines of NC- and S-specific antibody levels were associated with younger age (by 10.3 years, p < .01) and fewer CD3-CD56+ NK and CD19+CD27+ B memory cells. Changes of T-cell subsets at 10 m such as normalization of effector and Treg numbers, decline of RTE, and increase of central memory T cell numbers were independent of antibody decline pattern. CONCLUSIONS: COVID-19 causes long-term reduction of innate and adaptive immune cells which is associated with a Th2 serum cytokine profile. This may provide an immunological mechanism for long-term sequelae after COVID-19.
Subject(s)
Adaptive Immunity , Antibodies, Viral , COVID-19 , Cytokines , Immunity, Innate , SARS-CoV-2 , Th1 Cells , Th2 Cells , Humans , COVID-19/immunology , COVID-19/blood , SARS-CoV-2/immunology , Male , Cytokines/blood , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Th2 Cells/immunology , Adaptive Immunity/immunology , Adult , Th1 Cells/immunology , Th1 Cells/metabolism , Aged , Spike Glycoprotein, Coronavirus/immunology , Longitudinal Studies , Coronavirus Nucleocapsid Proteins/immunologyABSTRACT
Interleukin(IL)-2 was originally characterized as an important T-cellular growth factor but later on, turned out to be a pivotal homeostatic factor for the establishment and maintenance of both natural(n)Treg and peripheral(p)Treg. In this review, it was aimed to connect the peculiar structural and functional aspects of IL-2 to the innovative advancements in tailoring its multifaceted functional behavior for targeting various IL-2 receptor types. The article includes detailed descriptions of modified versions of IL-2, obtained by either mutating or fusing IL-2 to heterologous molecules or by forming IL-2/(monoclonal) antibody complexes (IL-2C), and discusses their functional implications for addressing such heterologous pathological conditions in cancer, autoimmunity, and allergy. Additionally, this review sheds light on the underexplored contribution of autoantibodies to the endogenous regulation of IL-2 within the realms of both health and disease. The ongoing efforts to fine-tune IL-2 responses through antibody-dependent targeting or molecular engineering offer considerable translational potential for the future utility of this important cytokine.
Subject(s)
Hypersensitivity , Neoplasms , Humans , Interleukin-2/therapeutic use , Interleukin-2/metabolism , Autoimmunity , Autoantibodies , Interleukins , Hypersensitivity/drug therapy , Neoplasms/drug therapy , T-Lymphocytes, RegulatoryABSTRACT
Loss-of-function variants in AP3D1 have been linked to Hermansky-Pudlak syndrome (HPS) 10, a severe multisystem disorder characterized by oculocutaneous albinism, immunodeficiency, neurodevelopmental delay, hearing loss (HL), and neurological abnormalities, fatal in early childhood. Here, we report a consanguineous family who presented with presumably isolated autosomal recessive (AR) HL. Whole-exome sequencing was performed on all core family members, and selected patients were screened using array-based copy-number analysis and karyotyping. Candidate variants were validated by Sanger sequencing and assessed in silico. A homozygous, likely pathogenic p.V711I missense variant in AP3D1 segregated with the HL. The family was characterized by thorough medical and laboratory examination. The HL was consistent across patients and accompanied by neurological manifestations in two brothers. The sole female patient was diagnosed with premature ovarian failure. Further findings, including mild neutropenia and reduced NK-cell cytotoxicity in some as well as brain alterations in all homozygous patients, were reminiscent of HPS10, though milder and lacking the characteristic albinism. Previously unrecognized, milder, isolated HL was identified in all heterozygous carriers. A protein model indicates that the variant interferes with protein-protein interactions. These results suggest that a missense variant alters inner-ear-specific functions leading to HL with mild HPS10-like symptoms of variable penetrance. Milder HL in heterozygous carriers may point towards semi-dominant inheritance of this trait. Since all previously reported HPS10 cases were pediatric, it is unknown whether the observed primary ovarian insufficiency recapitulates the subfertility in Ap3d1-deficient mice.
Subject(s)
Deafness , Hearing Loss, Sensorineural , Hermanski-Pudlak Syndrome , Male , Humans , Child, Preschool , Female , Animals , Mice , Hermanski-Pudlak Syndrome/diagnosis , Hermanski-Pudlak Syndrome/pathology , Mutation, Missense , Hearing Loss, Sensorineural/genetics , Carrier Proteins , Homozygote , Adaptor Protein Complex 3 , Adaptor Protein Complex delta Subunits , Adaptor Protein Complex beta SubunitsABSTRACT
Increasing evidence suggests multilineage cytopenias (also known as Evans syndrome) may be caused by inborn errors of immunity (IEI) with immune dysregulation. We studied a patient with autoimmune haemolytic anaemia and immune thrombocytopenia and identified a germline mutation in SASH3 (c.862C>T;p.Arg288Ter), indicating a recently identified IEI. Immunohistochemistry performed after clinically indicated splenectomy revealed severe hypoplasia/absence of germinal centres. The autoimmune phenotype was associated with an increased CD21low T-bet+ CD11c+ subset along with decreased regulatory T cells, impaired T-cell proliferation and T-cell exhaustion. The younger brother carries the same SASH3 mutation and shares immunophenotypic features but is currently clinical asymptomatic, indicating heterogeneity of SASH3 deficiency.
Subject(s)
Anemia, Hemolytic, Autoimmune , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Male , Humans , Anemia, Hemolytic, Autoimmune/genetics , Thrombocytopenia/genetics , MutationABSTRACT
INTRODUCTION: Neutrophilic granulocytes represent the first line of defense against microorganisms. Granulocytes phagocytose microorganisms and specifically synthesize oxygen radicals against them, which eventually kills the invaders. METHODS: Neutrophilic granulocytes were isolated from peripheral blood of healthy volunteer donors. Putative interference of new-generation antibiotics with neutrophil function was tested using a collection of granulocyte-stimulating agents and Amplex™ Red-based plate assay and flow cytometry-based respiratory burst assays. In addition, phagocytosis of E. coli, IL-8 production, bactericidal activity, and CD62L expression of granulocytes were evaluated. RESULTS: Of note, we found that the two glycopeptide antibiotics dalbavancin and teicoplanin inhibited ROS production upon granulocyte activation via different signaling pathways in a dose-dependent manner. Dalbavancin also blocked the PMA-induced shedding of CD62L. In contrast, the oxazolidinone antibiotics tedizolid and linezolid had no effect on neutrophil function, while the combination of ceftazidime/avibactam dose dependently inhibited the fMLP/Cytochalasin B-induced granulocyte burst in a dose-dependent manner. Additionally, we showed that dalbavancin and teicoplanin as well as sulfametrole/trimethoprim and ceftazidime/avibactam inhibited baseline and PMA-induced IL-8 production by neutrophilic granulocytes. Moreover, dalbavancin impaired the bactericidal activity of neutrophilic granulocytes. CONCLUSION: We here identified hitherto unknown inhibitory effects of several classes of antibiotics on the effector functions of neutrophilic granulocytes.
Subject(s)
Ceftazidime , Neutrophils , Humans , Ceftazidime/metabolism , Ceftazidime/pharmacology , Teicoplanin/pharmacology , Teicoplanin/metabolism , Escherichia coli , Interleukin-8/metabolism , Anti-Bacterial Agents/pharmacologyABSTRACT
INTRODUCTION: Cervical scrofulous lymphadenitis due to Mycobacterium avium complex (MAC) in immunocompetent adults is a rare disease. The presence of MAC infections demands meticulous clinical evaluation of patients along with detailed phenotypic and functional evaluation of their immune system including next-generation sequencing (NGS) analyses of target genes. METHODS: Exact clinical histories of the index patients both suffering from retromandibular/cervical scrofulous lymphadenitis were obtained along with phenotypic and functional immunological evaluations of leukocyte populations followed by targeted NGS-based sequencing of candidate genes. RESULTS: Immunological investigations showed normal serum immunoglobulin and complement levels, but lymphopenia, which was caused by significantly reduced CD3+CD4+CD45RO+ memory T-cell and CD19+ B-cell numbers. Despite normal T-cell proliferation to a number of accessory cell-dependent and -independent stimuli, the PBMC of both patients elaborated clearly reduced levels of a number of cytokines, including IFN-γ, IL-10, IL-12p70, IL-1α, IL-1ß, and TNF-α upon TCR-dependent T-cell stimulation with CD3-coated beads but also superantigens. The IFN-γ production deficiency was confirmed for CD3+CD4+ helper and CD4+CD8+ cytotoxic T cells on the single-cell level by multiparametric flow cytometry irrespective of whether PMA/ionomycin-stimulated whole blood cells or gradient-purified PBMC was analyzed. In the female patient L1, targeted NGS-based sequencing revealed a homozygous c.110T>C mutation in the interferon-γ receptor type 1 (IFNGR1) leading to significantly reduced receptor expression on both CD14+ monocytes and CD3+ T cells. Patient S2 presented with normal IFNGR1 expression on CD14+ monocytes but significantly reduced IFNGR1 expression on CD3+ T cells, despite the absence of detectable homozygous mutations in the IFNGR1 itself or disease-related target genes. Exogenous addition of increasing doses of IFN-γ resulted in proper upregulation of high-affinity FcγRI (CD64) on monocytes from patient S2, whereas monocytes from patient L1 showed only partial induction of CD64 expression after incubation with high doses of IFN-γ. CONCLUSION: A detailed phenotypic and functional immunological examination is urgently required to determine the cause of a clinically relevant immunodeficiency, despite detailed genetic analyses.
Subject(s)
Lymphadenitis , Mycobacterium avium-intracellulare Infection , Adult , Humans , Female , Mycobacterium avium Complex/genetics , Mycobacterium avium Complex/metabolism , Leukocytes, Mononuclear , Mycobacterium avium-intracellulare Infection/genetics , Mycobacterium avium-intracellulare Infection/metabolism , Cytokines/metabolism , Lymphadenitis/metabolismABSTRACT
BACKGROUND: Worldwide, pollen of the weed mugwort (Artemisiavulgaris) is a major cause of severe respiratory allergy, with its major allergen, Art v 1, being the key pathogenic molecule for millions of patients. Humanized mice transgenic for a human T-cell receptor specific for the major Art v 1 T-cell epitope and the corresponding HLA have been made. OBJECTIVE: We sought to characterize IgE epitopes of Art v 1-sensitized patients and humanized mice for molecular immunotherapy of mugwort allergy. METHODS: Four overlapping peptides incorporating surface-exposed amino acids representing the full-length Art v 1 sequence were synthesized and used to search for IgE reactivity to sequential epitopes. For indirect mapping, peptide-specific rabbit antibodies were raised to block IgE against surface-exposed epitopes on folded Art v 1. IgE reactivity and basophil activation studies were performed in clinically defined mugwort-allergic patients. Secondary structure of recombinant (r) Art v 1 and peptides was determined by circular dichroism spectroscopy. RESULTS: Mugwort-allergic patients and humanized mice sensitized by allergen inhalation showed IgE reactivity and/or basophil activation mainly to folded, complete Art v 1 but not to unfolded, sequential peptide epitopes. Blocking of allergic patients' IgE with peptide-specific rabbit antisera identified a hitherto unknown major conformational IgE binding site in the C-terminal Art v 1 domain. CONCLUSIONS: Identification of the new major conformational IgE binding site on Art v 1, which can be blocked with IgG raised against non-IgE reactive Art v 1 peptides, is an important basis for the development of a hypoallergenic peptide vaccine for mugwort allergy.
Subject(s)
Artemisia , Hypersensitivity , Allergens , Amino Acids , Animals , Antigens, Plant , Artemisia/chemistry , Epitopes, T-Lymphocyte , Humans , Immune Sera , Immunoglobulin E , Immunoglobulin G , Mice , Peptides , Plant Proteins , RabbitsABSTRACT
BACKGROUND: Antibody-based tests are available for measuring SARS-CoV-2-specific immune responses but fast T-cell assays remain scarce. Robust T cell-based tests are needed to differentiate specific cellular immune responses after infection from those after vaccination. METHODS: One hundred seventeen individuals (COVID-19 convalescent patients: n = 40; SARS-CoV-2 vaccinees: n = 41; healthy controls: n = 36) were evaluated for SARS-CoV-2-specific cellular immune responses (proliferation, Th1, Th2, Th17, and inflammatory cytokines, activation-induced marker [AIM] expression) by incubating purified peripheral blood mononuclear cells (PBMC) or whole blood (WB) with SARS-CoV-2 peptides (S, N, or M), vaccine antigens (tetanus toxoid, tick borne encephalitis virus) or polyclonal stimuli (Staphylococcal enterotoxin, phytohemagglutinin). RESULTS: N-peptide mix stimulation of WB identified the combination of IL-2 and IL-13 secretion as superior to IFN-γ secretion to discriminate between COVID-19-convalescent patients and healthy controls (p < .0001). Comparable results were obtained with M- or S-peptides, the latter almost comparably recalled IL-2, IFN-γ, and IL-13 responses in WB of vaccinees. Analysis 10 months as opposed to 10 weeks after COVID-19, but not allergic disease status, positively correlated with IL-13 recall responses. WB cytokine responses correlated with cytokine and proliferation responses of PBMC. Antigen-induced neo-expression of the C-type lectin CD69 on CD4+ (p < .0001) and CD8+ (p = .0002) T cells informed best about the SARS-CoV-2 exposure status with additional benefit coming from CD25 upregulation. CONCLUSION: Along with N- and S-peptide-induced IL-2 and CD69 neo-expression, we suggest to include the type 2 cytokine IL-13 as T-cellular recall marker for SARS-CoV-2 specific T-cellular immune responses after infection and vaccination.
Subject(s)
COVID-19 , Leukocytes, Mononuclear , Humans , Cytokines/metabolism , Immunity, Cellular , Interleukin-13 , Interleukin-2 , Leukocytes, Mononuclear/metabolism , SARS-CoV-2 , VaccinationABSTRACT
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. METHODS: We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. RESULTS: PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. CONCLUSION: The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.
Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin G , Pandemics/prevention & control , Rabbits , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes , Humans , Spike Glycoprotein, Coronavirus/geneticsABSTRACT
The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.
Subject(s)
Adenylate Kinase/metabolism , T-Lymphocytes, Helper-Inducer/physiology , T-Lymphocytes, Regulatory/physiology , Adaptation, Physiological , Adenylate Kinase/genetics , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes , Colitis/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Enzymologic , Lymphocyte Activation , Mice , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Th1 Cells/physiology , Th17 Cells/physiologyABSTRACT
BACKGROUND: While children usually experience a mild course of COVID-19, and a severe disease is more common in adults, the features, specificities, and functionality of the SARS-CoV-2-specific antibody response in the pediatric population are of interest. METHODS: We performed a detailed analysis of IgG antibodies specific for SARS-CoV-2-derived antigens S and RBD by ELISA in 26 SARS-CoV-2 seropositive schoolchildren with mild or asymptomatic disease course, and in an equally sized, age- and gender-matched control group. Furthermore, a detailed mapping of IgG reactivity to a panel of microarrayed SARS-CoV-2 proteins and S-derived peptides was performed by microarray technology. The capacity of the antibody response to block RBD-ACE2 binding and virus neutralization were assessed. Results were compared with those obtained in an adult COVID-19 convalescent population. RESULTS: After mild COVID-19, anti-S and RBD-specific IgG antibodies were developed by 100% and 84.6% of pediatric subjects, respectively. No difference was observed in regards to symptoms and gender. Mounted antibodies recognized conformational epitopes of the spike protein and were capable to neutralize the virus up to a titer of ≥80 and to inhibit the ACE2-RBD interaction by up to 65%. SARS-CoV-2-specific IgG responses in children were comparable to mildly affected adult patients. CONCLUSION: SARS-CoV-2 asymptomatic and mildly affected pediatric patients develop a SARS-CoV-2-specific antibody response, which is comparable regarding antigen, epitope recognition, and the ability to inhibit the RBD-ACE2 interaction to that observed in adult patients after mild COVID-19.
Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Child , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolismABSTRACT
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane-bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C-reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H-ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C-reactive protein and pentraxin 3; L-ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar-air interface.
Subject(s)
Asthma/immunology , Bronchial Hyperreactivity/immunology , C-Reactive Protein/immunology , Homeostasis/immunology , Receptors, Pattern Recognition/immunology , Respiratory Mucosa/immunology , Allergens/administration & dosage , Animals , Asthma/genetics , Asthma/pathology , Bronchial Hyperreactivity/genetics , Bronchial Hyperreactivity/pathology , C-Reactive Protein/genetics , Collectins/genetics , Collectins/immunology , Complement C3/genetics , Complement C3/immunology , Complement C5/genetics , Complement C5/immunology , Epithelial Cells/immunology , Epithelial Cells/pathology , Gene Expression Regulation , Homeostasis/genetics , Humans , Lectins/genetics , Lectins/immunology , Receptors, Pattern Recognition/genetics , Respiratory Mucosa/pathology , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/immunology , Serum Amyloid P-Component/genetics , Serum Amyloid P-Component/immunologyABSTRACT
Recent years have seen a dramatic increase in the range of applications of virus-like nanoparticle (VNP)- and liposome-based antigen delivery systems for the treatment of allergies. These platforms rely on a growing number of inert virus-backbones or distinct lipid formulations and intend to engage the host's innate and/or adaptive immune system by virtue of their co-delivered immunogens. Due to their particulate nature, VNP and liposomal preparations are also capable of breaking tolerance against endogenous cytokines, Igs, and their receptors, allowing for the facile induction of anti-cytokine, anti-IgE, or anti-FcεR antibodies in the host. We here discuss the "pros and cons" of inducing such neutralizing autoantibodies. Moreover, we cover another major theme of the last years, i.e., the engineering of non-anaphylactogenic particles and the elucidation of the parameters relevant for the specific trafficking and processing of such particles in vivo. Finally, we put the various technical advances in VNP- and liposome-research into (pre-)clinical context by referring and critically discussing the relevant studies performed to treat allergic diseases.
Subject(s)
Hypersensitivity/immunology , Immunomodulation , Liposomes/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Humans , Hypersensitivity/therapy , Liposomes/therapeutic use , Nanoparticles/therapeutic use , Vaccines, Virus-Like Particle/therapeutic useABSTRACT
BACKGROUND: Allergy, the most frequent immune disorder affecting 30% of the world's population, is the consequence of immunoglobin E (IgE) sensitization to allergens. Among the genetic factors suspected to be involved in allergy, the HLA class-II genomic region is a strong candidate. OBJECTIVE: To assess the association between HLA class-II alleles and specific IgE (sIgE) sensitization to a large number of respiratory allergen molecules. METHODS: The analysis relied on 927 participants of the EGEA cohort, including 497 asthmatics. The study focuses on 26 aeroallergens recognized by sIgE in at least 5% of the study population (determined with the MEDALL chip with sIgE ≥ 0.3 ISU) and 23 imputed HLA class-II alleles. For each sIgE sensitization and HLA class-II allele, we fitted a logistic regression model accounting for familial dependence and adjusted for gender, age, and genetic principal components. p-values were corrected for multiple comparisons (False Discovery Rate). RESULTS: Most of the 19 statistically significant associations observed regard pollen allergens (mugwort Art v 1, olive tree Ole e 1, timothy grass Phl p 2, Phl p 5 and plantain Pla l 1), three were mold allergen (Alternaria Alt a 1), and a single one regards house dust mite allergen (Der p 7). No association was observed with pet allergens. The strongest associations were found with mugwort Art v 1 (OR = 5.42 (95%CI, 3.30; 8.88), 4.14 (2.65; 6.47), 3.16 (1.88; 5.31) with DQB1*05:01, DQA1*01:01 and DRB1*01:01, respectively). CONCLUSION: Our results support the important role of HLA class-II alleles as immune response genes predisposing their carriers for sensitization to various major pollen allergens.
Subject(s)
Allergens , Hypersensitivity , Alleles , Humans , Hypersensitivity/genetics , Immunoglobulin E , PhleumABSTRACT
Allergen-specific immunotherapy (AIT) is an allergen-specific form of treatment for patients suffering from immunoglobulin E (IgE)-associated allergy; the most common and important immunologically mediated hypersensitivity disease. AIT is based on the administration of the disease-causing allergen with the goal to induce a protective immunity consisting of allergen-specific blocking IgG antibodies and alterations of the cellular immune response so that the patient can tolerate allergen contact. Major advantages of AIT over all other existing treatments for allergy are that AIT induces a long-lasting protection and prevents the progression of disease to severe manifestations. AIT is cost effective because it uses the patient´s own immune system for protection and potentially can be used as a preventive treatment. However, broad application of AIT is limited by mainly technical issues such as the quality of allergen preparations and the risk of inducing side effects which results in extremely cumbersome treatment schedules reducing patient´s compliance. In this article we review progress in AIT made from its beginning and provide an overview of the state of the art, the needs for further development, and possible technical solutions available through molecular allergology. Finally, we consider visions for AIT development towards prophylactic application.
Subject(s)
Hypersensitivity , Vaccines , Allergens , Desensitization, Immunologic , Humans , Hypersensitivity/therapy , Immunoglobulin EABSTRACT
BACKGROUND: SARS-CoV-2 has triggered a pandemic that is now claiming many lives. Several studies have investigated cellular immune responses in COVID-19-infected patients during disease but little is known regarding a possible protracted impact of COVID-19 on the adaptive and innate immune system in COVID-19 convalescent patients. METHODS: We used multiparametric flow cytometry to analyze whole peripheral blood samples and determined SARS-CoV-2-specific antibody levels against the S-protein, its RBD-subunit, and viral nucleocapsid in a cohort of COVID-19 convalescent patients who had mild disease ~10 weeks after infection (n = 109) and healthy control subjects (n = 98). Furthermore, we correlated immunological changes with clinical and demographic parameters. RESULTS: Even ten weeks after disease COVID-19 convalescent patients had fewer neutrophils, while their cytotoxic CD8+ T cells were activated, reflected as higher HLA-DR and CD38 expression. Multiparametric regression analyses showed that in COVID-19-infected patients both CD3+ CD4+ and CD3+ CD8+ effector memory cells were higher, while CD25+ Foxp3+ T regulatory cells were lower. In addition, both transitional B cell and plasmablast levels were significantly elevated in COVID-19-infected patients. Fever (duration, level) correlated with numbers of central memory CD4+ T cells and anti-S and anti-RBD, but not anti-NC antibody levels. Moreover, a "young immunological age" as determined by numbers of CD3+ CD45RA+ CD62L+ CD31+ recent thymic emigrants was associated with a loss of sense of taste and/or smell. CONCLUSION: Acute SARS-CoV-2 infection leaves protracted beneficial (ie, activation of T cells) and potentially harmful (ie, reduction of neutrophils) imprints in the cellular immune system in addition to induction of specific antibody responses.