Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 114(18): 4805-4810, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28373558

ABSTRACT

The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies.


Subject(s)
Aquaporin 1/metabolism , Arteries , Capillary Permeability , Endothelium, Vascular , Nonlinear Optical Microscopy , Animals , Arteries/diagnostic imaging , Arteries/metabolism , Endothelium, Vascular/diagnostic imaging , Endothelium, Vascular/metabolism , Male , Rats , Rats, Sprague-Dawley
2.
Physiol Plant ; 162(2): 205-218, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29080211

ABSTRACT

The parasitic flowering plant genus Cuscuta (dodder) is a parasitic weed that infects many important crops. Once it winds around the shoots of potential host plants and initiates the development of penetration organs, called haustoria, only a few plant species have been shown to deploy effective defense mechanisms to ward off Cuscuta parasitization. However, a notable exception is Solanum lycopersicum (tomato), which exhibits a local hypersensitive reaction when attacked by giant dodder (Cuscuta reflexa). Interestingly, the closely related wild desert tomato, Solanum pennellii, is unable to stop the penetration of its tissue by the C. reflexa haustoria. In this study, we observed that grafting a S. pennellii scion onto the rootstock of the resistant S. lycopersicum did not change the susceptibility phenotype of S. pennellii. This suggests that hormones, or other mobile substances, produced by S. lycopersicum do not induce a defense reaction in the susceptible tissue. Screening of a population of introgression lines harboring chromosome fragments from S. pennellii in the genome of the recurrent parent S. lycopersicum, revealed that most lines exhibit the same defense reaction as shown by the S. lycopersicum parental line. However, several lines showed different responses and exhibited either susceptibility, or cell death that extended considerably beyond the infection site. These lines will be valuable for the future identification of key loci involved in the perception of, and resistance to, C. reflexa and for developing strategies to enhance resistance to infection in crop species.


Subject(s)
Cuscuta/physiology , Plant Weeds/physiology , Solanum lycopersicum/physiology , Solanum/physiology , Chromosomes, Plant/genetics , Genome, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Phenotype , Plant Shoots/genetics , Plant Shoots/metabolism , Plant Shoots/physiology , Solanum/genetics , Solanum/metabolism , Species Specificity
3.
Plant Physiol ; 165(1): 105-18, 2014 May.
Article in English | MEDLINE | ID: mdl-24652345

ABSTRACT

The pectin polymer homogalacturonan (HG) is a major component of land plant cell walls and is especially abundant in the middle lamella. Current models suggest that HG is deposited into the wall as a highly methylesterified polymer, demethylesterified by pectin methylesterase enzymes and cross-linked by calcium ions to form a gel. However, this idea is based largely on indirect evidence and in vitro studies. We took advantage of the wall architecture of the unicellular alga Penium margaritaceum, which forms an elaborate calcium cross-linked HG-rich lattice on its cell surface, to test this model and other aspects of pectin dynamics. Studies of live cells and microscopic imaging of wall domains confirmed that the degree of methylesterification and sufficient levels of calcium are critical for lattice formation in vivo. Pectinase treatments of live cells and immunological studies suggested the presence of another class of pectin polymer, rhamnogalacturonan I, and indicated its colocalization and structural association with HG. Carbohydrate microarray analysis of the walls of P. margaritaceum, Physcomitrella patens, and Arabidopsis (Arabidopsis thaliana) further suggested the conservation of pectin organization and interpolymer associations in the walls of green plants. The individual constituent HG polymers also have a similar size and branched structure to those of embryophytes. The HG-rich lattice of P. margaritaceum, a member of the charophyte green algae, the immediate ancestors of land plants, was shown to be important for cell adhesion. Therefore, the calcium-HG gel at the cell surface may represent an early evolutionary innovation that paved the way for an adhesive middle lamella in multicellular land plants.


Subject(s)
Cell Wall/metabolism , Charophyceae/cytology , Charophyceae/metabolism , Pectins/metabolism , Calcium/metabolism , Cell Adhesion/drug effects , Cell Wall/ultrastructure , Cellulose/metabolism , Charophyceae/drug effects , Charophyceae/ultrastructure , Edetic Acid/analogs & derivatives , Edetic Acid/pharmacology , Epitopes/metabolism , Microarray Analysis , Models, Biological , Pectins/chemistry , Pectins/immunology , Polygalacturonase/metabolism , Polysaccharide-Lyases/metabolism
4.
Ann Bot ; 114(6): 1359-73, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25024256

ABSTRACT

BACKGROUND AND AIMS: Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. METHODS: Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). KEY RESULTS: Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. CONCLUSIONS: The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular wall materials when attached to a nitrogen-fixing host suggest subsequent processing and transient storage of nutrients. AGPs might therefore be implicated in nutrient transfer and metabolism in haustoria.


Subject(s)
Cell Wall/chemistry , Mucoproteins/metabolism , Orobanchaceae/cytology , Pectins/metabolism , Antibodies, Monoclonal , Cell Wall/metabolism , Epitopes , Esterification , Glucans/immunology , Glucans/metabolism , Glycoproteins/metabolism , Immunohistochemistry , Mucoproteins/immunology , Orobanchaceae/chemistry , Orobanchaceae/metabolism , Pectins/immunology , Plant Proteins/immunology , Plant Proteins/metabolism , Polysaccharides/immunology , Polysaccharides/metabolism , Xylans/immunology , Xylans/metabolism , Xylem/chemistry , Xylem/cytology , Xylem/metabolism
5.
Pharmaceutics ; 14(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35214195

ABSTRACT

The delivery of antisense oligonucleotides (ASOs) to specific cell types via targeted endocytosis is challenging due to the low cell surface expression of target receptors and inefficient escape of ASOs from the endosomal pathway. Conjugating ASOs to glucagon-like peptide 1 (GLP1) leads to efficient target knockdown, specifically in pancreatic ß-cells. It is presumed that ASOs dissociate from GLP1 intracellularly to enable an ASO interaction with its target RNA. It is unknown where or when this happens following GLP1-ASO binding to GLP1R and endocytosis. Here, we use correlative nanoscale secondary ion mass spectroscopy (NanoSIMS) and transmission electron microscopy to explore GLP1-ASO subcellular trafficking in GLP1R overexpressing HEK293 cells. We isotopically label both eGLP1 and ASO, which do not affect the eGLP1-ASO conjugate function. We found that the eGLP1 peptide and ASO are not detected at the same level in the same endosomes, within 30 min of GLP1R-HEK293 cell exposure to eGLP1-ASO. When we utilized different linker chemistry to stabilize the GLP1-ASO conjugate, we observed more ASO located with GLP1 compared to cell incubation with the less stable conjugate. Overall, our work suggests that the ASO separates from GLP1 relatively early in the endocytic pathway, and that linker chemistry might impact the GLP1-ASO function.

6.
Cardiovasc Res ; 118(8): 1978-1992, 2022 06 29.
Article in English | MEDLINE | ID: mdl-34173824

ABSTRACT

AIMS: Coronary microvascular smooth muscle cells (SMCs) respond to luminal pressure by developing myogenic tone (MT), a process integral to the regulation of microvascular perfusion. The cellular mechanisms underlying poor myogenic reactivity in patients with heart valve disease are unknown and form the focus of this study. METHODS AND RESULTS: Intramyocardial coronary micro-arteries (IMCAs) isolated from human and pig right atrial (RA) appendage and left ventricular (LV) biopsies were studied using pressure myography combined with confocal microscopy. All RA- and LV-IMCAs from organ donors and pigs developed circa 25% MT. In contrast, 44% of human RA-IMCAs from 88 patients with heart valve disease had poor (<10%) MT yet retained cell viability and an ability to raise cytoplasmic Ca2+ in response to vasoconstrictor agents. Comparing across human heart chambers and species, we found that based on patient medical history and six tests, the strongest predictor of poor MT in IMCAs was increased expression of the synthetic marker caldesmon relative to the contractile marker SM-myosin heavy chain. In addition, high resolution imaging revealed a distinct layer of longitudinally aligned SMCs between ECs and radial SMCs, and we show poor MT was associated with disruptions in these cellular alignments. CONCLUSION: These data demonstrate the first use of atrial and ventricular biopsies from patients and pigs to reveal that impaired coronary MT reflects a switch of viable SMCs towards a synthetic phenotype, rather than a loss of SMC viability. These arteries represent a model for further studies of coronary microvascular contractile dysfunction.


Subject(s)
Heart Valve Diseases , Muscle, Smooth, Vascular , Animals , Coronary Vessels/pathology , Heart Valve Diseases/metabolism , Humans , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Swine
7.
Front Microbiol ; 8: 2681, 2017.
Article in English | MEDLINE | ID: mdl-29379477

ABSTRACT

Introduction: Mycobacteria have several unique cellular characteristics, such as multiple cell envelope layers, elongation at cell poles, asymmetric cell division, and accumulation of intracytoplasmic lipid inclusions, which contributes to their survival under stress conditions. However, the understanding of these characteristics in clinical Mycobacterium tuberculosis (M. tuberculosis) isolates and under host stress is limited. We previously reported the influence of host stress on the cell length distribution in a large set of clinical M. tuberculosis isolates (n = 158). Here, we investigate the influence of host stress on the cellular ultrastructure of few clinical M. tuberculosis isolates (n = 8) from that study. The purpose of this study is to further understand the influence of host stress on the cellular adaptations of clinical M. tuberculosis isolates. Methods: We selected few M. tuberculosis isolates (n = 8) for analyzing the cellular ultrastructure ex vivo in sputum and under in vitro stress conditions by transmission electron microscopy. The cellular adaptations of M. tuberculosis in sputum were correlated with the ultrastructure of antibiotic sensitive and resistant isolates in liquid culture, under oxidative stress, iron deficiency, and exposure to isoniazid. Results: In sputum, M. tuberculosis accumulated intracytoplasmic lipid inclusions. In liquid culture, clinical M. tuberculosis revealed isolate to isolate variation in the extent of intracytoplasmic lipid inclusions, which were absent in the laboratory strain H37Rv. Oxidative stress, iron deficiency, and exposure to isoniazid increased the accumulation of lipid inclusions and decreased the thickness of the cell envelope electron transparent layer in M. tuberculosis cells. Furthermore, intracytoplasmic compartments were observed in iron deficient cells. Conclusion: Our ultrastructural analysis has revealed significant influence of host stress on the cellular adaptations in clinical M. tuberculosis isolates. These adaptations may contribute to the survival of M. tuberculosis under host and antibiotic stress conditions. Variation in the cellular adaptations among clinical M. tuberculosis isolates may correlate with their ability to persist in tuberculosis patients during antibiotic treatment. These observations indicate the need for further analyzing these cellular adaptations in a large set of clinical M. tuberculosis isolates. This will help to determine the significance of these cellular adaptations in the tuberculosis treatment.

SELECTION OF CITATIONS
SEARCH DETAIL