Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Foods Hum Nutr ; 79(1): 219-224, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38345666

ABSTRACT

The industry has increasingly explored the development of foods with functional properties, where supplementation with probiotics and bioactive compounds has gained prominence. In this context, the study aimed to evaluate the influence of in vitro biological digestion on the content of phenolic compounds, antioxidant activity, and inhibition of α-amylase and α-glucosidase activities of probiotic yogurt supplemented with the lactic acid bacteria Lactococcus lactis R7 and red guava extract (Psidium cattleianum). A yogurt containing L. lactis R7 (0.1%) and red guava extract (4%) was characterized for the content of phenolic compounds, antioxidant activity, and potential for inhibition of digestive enzymes after a simulated in vitro digestion process. After digestion, the caffeic and hydroxybenzoic acids remained, and sinapic acid only in the last digestive phase. Antioxidant activity decreased during digestion by 28.93, 53.60, and 27.97% for DPPH, nitric oxide and hydroxyl radicals, respectively, and the inhibition of the α-amylase enzyme decreased only 4.01% after the digestion process. α-glucosidase was more efficient in intestinal digestion, demonstrating an increase of almost 50% in probiotic yogurt with red guava extract before digestion. Possibly, the phenolics change their conformation during digestion, generating new compounds, reducing antioxidant activity, and increasing the inhibitory activity of α-glucosidase digestive enzymes. It was concluded that the probiotic yogurt formulation supplemented with red guava extract could interfere with the concentration of phenolic compounds and the formation of new compounds, suggesting a positive and effective inhibition of the digestive enzymes, even after the digestive process.


Subject(s)
Lactococcus lactis , Probiotics , Psidium , Antioxidants/pharmacology , alpha-Amylases , alpha-Glucosidases , Psidium/chemistry , Yogurt , Dietary Supplements , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
J Clean Prod ; 331: 130000, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34898862

ABSTRACT

The ongoing global spread of COVID-19 (SARS-CoV-2 2019 disease) is causing an unprecedented repercussion on human health and the economy. Despite the primary mode of transmission being through air droplets and contact, the transmission via wastewater is a critical concern. There is a lack of techniques able to provide complete disinfection, along with the uncertainty related to the behavior of SARS-CoV-2 in the natural environment and risks of contamination. This fact makes urgent the research towards new alternatives for virus removal from water and wastewater. Thus, this research aimed to characterize new lost-cost adsorbents for SARS-CoV-2 using Hymenachne grumosa as a precursor and verify its potential for removing SARS-CoV-2 from the solution. The aquatic macrophyte H. grumosa had in natura and activated carbon produced with H. grumosa and zinc chloride (ZnCl2,1:1) impregnation and carbonization (700 °C, 1 h) were incubated for 24 h with inactivated SARS-CoV-2 viral suspension, and then the ribonucleic acid (RNA) was extracted and viral load quantified through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technique. The results demonstrated the great adsorption potential, achieving removal of 98.44% by H. grumosa "in natura", and 99.61% by H. grumosa with carbon activation, being similar to commercial activated carbon (99.67%). Thus, this study highlights the possibility of low-cost biofilters to be used for SARS-CoV-2 removal, as an excellent alternative for wastewater treatment or watercourses decontamination.

3.
Int J Obes (Lond) ; 45(2): 337-341, 2021 02.
Article in English | MEDLINE | ID: mdl-32873907

ABSTRACT

The genetic influence in obesity prevalence is well described, but the role of genetic markers related to athletic strength/ endurance performance remains controversial. We investigated associations between obesity and the genetic polymorphisms alpha-actinin-3 (ACTN3) R577X and angiotensin-converting enzyme (ACE) I/D in schoolchildren aged 4-13 years from Southern Brazil. We collected sociodemographic data from parents through a questionnaire and conducted an anthropometric assessment. DNA was extracted from buccal cells and genotyping was performed by PCR. We found that 1.9% of the individuals were classified as low weight-for-age, 57.6% as normal weight and 40.5% as overweight/ obesity. Regarding allelic distribution, we found that 52.5% of individuals were DD, 30.8% ID, and 16.7% II for ACE; and 38.8% of individuals were RR, 40.2% RX and 21.0% XX for ACTN3. When both polymorphisms were combined, we observed a clear association between the composed genetic profile of these alleles and severe obesity in schoolchildren. Our data suggest that the combined analysis of ACTN3 R577X and ACE I/D polymorphisms may serve as a predictor for the risk of severe obesity in children. These data can contribute to a better understanding of the relationship between these polymorphisms and the body weight development of school-age children.


Subject(s)
Actinin/genetics , Pediatric Obesity/genetics , Peptidyl-Dipeptidase A/genetics , Adolescent , Brazil/epidemiology , Child , Child, Preschool , Female , Genotype , Humans , Male , Polymorphism, Genetic , Risk Factors
4.
Article in English | MEDLINE | ID: mdl-34370597

ABSTRACT

This work aimed to evaluate the composting of the mixture of residues from fish filleting, using sawdust as a structuring material as an alternative for stabilization, through physical-chemical analysis and phytotoxicity. The experiment was carried out in a composter 1.10 m long, 1.50 m wide, and 1.20 m high and presenting 2.50 m in total height, which received the mixture of fish filleting wastes and sawdust in a5:3 ratio, respectively. The results demonstrated that composting in cells is an efficient alternative for the decomposition of the mixture of fish filleting and sawdust residues. The rapid decomposition of fish waste and the low C/N ratio harms the development of thermophilic microorganisms during the composting of the mixture of fish filleting and sawdust residues. The compaction of the sawdust layers and the absence of stirring in the composting method in cells collaborate for the compost to need a time greater than 60 days to be recommended as simple organic fertilizer. The biomass stirring is necessary so that sawdust can be considered a good structuring agent. The phytotoxicity test should be taken into account by the Normative Instruction n° 25/2009 as an indicator of compost maturity.


Subject(s)
Composting , Animals , Fertilizers , Soil , Wood
5.
Int J Phytoremediation ; 22(12): 1216-1223, 2020.
Article in English | MEDLINE | ID: mdl-32297807

ABSTRACT

The aim of this study was to investigate the phytoremediation potential promoted by Enydra anagallis at anthropogenic polluted area - Santa Bárbara Stream, south Brazil. The watercourse was selected considering it is the main source of water to Pelotas city and the presence of high levels of nutrients and toxic metals. The phytoremediation indexes as bioconcentration factor (BCF), translocation factor (TF), and plant effective number (PEN) were estimated. The results highlighted the possibility of application of E. anagallis in phytoextraction of Ca, K, Mg and P, showing the ability of maintaining high levels of elements in aerial parts of the plant. It was also detected the rhizofiltration mechanism (BCF > 1.0 and TF < 1.0), with possible application for the removal of aluminum, arsenic, chromium, copper, iron, manganese, sodium, nickel, lead, sulfur, vanadium and zinc. Regarding the Plant Effective Number (PEN), it can be highlighted the values found for Al (55 plants), P (38 plants) and S (56 plants), being the number of plants needed for removal of 1 g. Thus, E. anagallis showed natural potential for removing contaminants from the aquatic environment and along with further studies, it could be a good recovery alternative for other contaminated watercourses.


Subject(s)
Arsenic/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Anagallis , Biodegradation, Environmental , Brazil
6.
J Environ Manage ; 256: 109953, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31989980

ABSTRACT

The study evaluated plants with phytoremediation potential that occur spontaneously in an area of copper mining tailings in Southern of Brazil. Eleven plant species were investigated for heavy metal concentrations in its biomass. All species showed copper concentrations greater than 100 mg kg-1, and seven species highlighted for copper concentrations between 321 and 586 mg kg-1 and these species showed Cr concentrations between 25 and 440 mg kg-1. The species S. viarum Dunal and B. trimera Less were highlighted showing the highest concentrations of Cr (586 mg kg-1) and Cu (440 mg kg-1), respectively. Seven species showed Pb phytoextraction potential and four species showed Cu phytostabilization potential. It was concluded that the investigated species are adapted to low nutritional conditions and showed tolerance to heavy metals, mainly Cu, Pb and Cr in its biomass.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Brazil , Copper , Mining , Plant Roots
7.
Int J Phytoremediation ; 21(11): 1145-1152, 2019.
Article in English | MEDLINE | ID: mdl-31088309

ABSTRACT

The evaluation of plants occurring naturally at contaminated environments are essential for applying this species in remediation techniques. In this context, the Sagittaria montevidensis with potential for phytoremediation was studied at an anthropogenic polluted stream in southern Brazil. The nutrients and heavy metal content were determined in the phytomass. The phytoremediation indexes were evaluated such as bioconcentration factor (BCF), translocation factor (TF), plant effective number (PEN), and potential phytoremoval (mg m-2). The S. montevidensis was then detected as presenting natural phytoextraction ability for potassium and calcium elements and also demonstrated rhizofiltration potential for phosphorus, manganese, aluminum, vanadium, sulfur, iron, arsenic, copper, magnesium, zinc, sodium, lead, cadmium, nickel, chromium, considering its ability of bioaccumulating these contaminants and retain high levels in the roots. The highest potential for bioremoval (mg m-2) of the S. montevidensis was detected for potassium and calcium (recommending thus the use for phytoextraction) and for aluminum, phosphorus, iron, magnesium, sulfur, and sodium, along with heavy metals (recommended for rhizofiltration). The S. montevidensis decontamination ability, along with its biomass production and its adaptability represents a great advance in order to the recovery of this degraded area and possible application in other contaminated watercourses in Brazil.


Subject(s)
Metals, Heavy , Sagittaria , Soil Pollutants , Biodegradation, Environmental , Brazil , Nutrients
8.
Polymers (Basel) ; 15(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36850309

ABSTRACT

Hydrogels have become one of the potential polymers used with great performance for many issues and can be promoted as biomaterials with highly innovative characteristics and different uses. Gelatin is obtained from collagen, a co-product of the meat industry. Thus, converting wastes such as cartilage, bones, and skins into gelatin would give them added value. Furthermore, biodegradability, non-toxicity, and easy cross-linking with other substances can promote polymers with high performance and low cost for many applications, turning them into sustainable products with high acceptance in society. Gelatin-based hydrogels have been shown to be useful for different applications with important and innovative characteristics. For instance, these hydrogels have been used for biomedical applications such as bone reconstruction or drug delivery. Furthermore, they have also shown substantial performance and important characteristics for remediation for removing pollutants from water, watercourse, and effluents. After its uses, gelatin-based hydrogels can easily biodegrade and, thus, can be sustainably used in the environment. In this study, gelatin was shown to be a potential polymer for hydrogel synthesis with highly renewable and sustainable characteristics and multiple uses.

9.
Arch Endocrinol Metab ; 68: e210204, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948561

ABSTRACT

Objective: To study associations between polymorphisms in the angiotensin converting enzyme (ACE I/D), actinin 3 (ACTN3 R577X) and paraoxonase 1 (PON1 T(-107)C) genes and chronic diseases (diabetes and hypertension) in women. Materials and methods: Genomic DNA was extracted from saliva samples of 78 women between 18 and 59 years old used for genetic polymorphism screening. Biochemical data were collected from the medical records in Basic Health Units from Southern Brazil. Questionnaires about food consumption, physical activity level and socioeconomic status were applied. Results: The XX genotype of ACTN3 was associated with low HDL levels and high triglycerides, total cholesterol and glucose levels. Additionally, high triglycerides and LDL levels were observed in carriers of the TT genotype of PON1, and lower total cholesterol levels were associated to the CC genotype. As expected, women with diabetes/hypertense had increased body weight, BMI (p = 0.02), waist circumference (p = 0.01), body fat percentage, blood pressure (p = 0.02), cholesterol, triglycerides (p = 0.02), and blood glucose (p = 0.01), when compared to the control group. Conclusion: Both ACTN3 R577X and PON1 T(-107)C polymorphisms are associated with nutritional status and blood glucose and lipid levels in women with diabetes/hypertense. These results contribute to genetic knowledge about predisposition to obesity-related diseases.


Subject(s)
Diabetes Mellitus , Hypertension , Adolescent , Adult , Female , Humans , Middle Aged , Young Adult , Actinin/genetics , Aryldialkylphosphatase/genetics , Blood Glucose , Cholesterol , Diabetes Mellitus/genetics , Genotype , Hypertension/genetics , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic/genetics , Triglycerides
10.
Braz J Microbiol ; 54(3): 2183-2195, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37434082

ABSTRACT

Pediococcus pentosaceus is a lactic acid bacterium that has probiotic potential proven by studies. However, its viability can be affected by adverse conditions such as storage, heat stress, and even gastrointestinal passage. Thus, the aim of the present study was to microencapsulate and characterize microcapsules obtained by spray drying and produced only with whey powder (W) or whey powder combined with pectin (WP) or xanthan (WX) in the protection of P. pentosaceus P107. In the storage test at temperatures of - 20 °C and 4 °C, the most viable microcapsule was WP (whey powder and pectin), although WX (whey powder and xanthan) presented better stability at 25 °C. In addition, WX did not show stability to ensure probiotic potential (< 6 Log CFU mL-1) for 110 days and the microcapsule W (whey powder) maintained probiotic viability at the three temperatures (- 20 °C, 4 °C, and 25 °C) for 180 days. In the exposition to simulated gastrointestinal juice, the WX microcapsule showed the best results in all tested conditions, presenting high cellular viability. For the thermal resistance test, WP microcapsule was shown to be efficient in the protection of P. pentosaceus P107 cells. The Fourier transform infrared spectroscopy (FTIR) results showed that there was no chemical interaction between microcapsules of whey powder combined with xanthan or pectin. The three microcapsules produced were able to protect the cell viability of the microorganism, as well as the drying parameters were adequate for the microcapsules produced in this study.


Subject(s)
Probiotics , Whey , Pectins , Capsules/chemistry , Powders , Whey Proteins
11.
Food Chem ; 408: 135206, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36528993

ABSTRACT

The present study aimed to carry out the physical-chemical, antioxidant, and enzymatic characterization of green tea and kombucha. It was observed that kombucha had lower pH, higher acidity, and solids content compared to green tea. As for the concentration of total phenolic compounds by the Folin Ciocalteu method, there was no significant difference between the beverages. In the antioxidant analysis by the DPPH assay, it was observed that both green tea and kombucha presented significant antioxidant capacity. In the TBARS analysis with the pH of the beverages neutralized, both showed a significant reduction in lipid peroxidation; however, kombucha exhibited pro-oxidant activity when evaluated in its natural form by this method. The beverages also showed significant inhibitory activity of the α-glucosidase enzyme, however, green tea presented superior inhibitory potential.


Subject(s)
Antioxidants , Tea , Tea/chemistry , Antioxidants/analysis , Polyphenols/analysis , Phenols/analysis , Beverages/analysis
12.
J Diet Suppl ; : 1-17, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38148685

ABSTRACT

The present systematic review aimed to evaluate the effect of probiotic supplementation on gut microbiota and sport performance in athletes and physically active individuals. This review followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (P RISMA). The search had no time limits and included the following databases: MEDLINE, LILACS, Scopus, Web of Science, Cochrane, and SP ORT Discus. The risk of bias was assessed through the updated version of the Cochrane tool for assessing the risk of bias in randomized trials (RoB 2). Nine randomized clinical trials (RCTs) were included, accounting for 216 participants. Of these, seven studies found positive results on sport performance. Additionally, some studies showed significant decrease in biochemical parameters linked to inflammation. It was also observed direct results in the microbiota composition of the participants, such as an increase in the abundance of probiotics and a decrease in certain pathogenic bacteria. Therefore, the use of probiotics showed improvement in inflammatory biomarkers and oxidative stress, which indirectly may contribute to the improvement of sport performance. However, the majority of the studies presented a high risk of bias, which impair the reproducibility of the results. While the field of probiotic supplementation and sport performance is emerging, the promising results from this systematic review suggest that further investigation through larger and more robust randomized clinical trials can provide valuable insights for athletes and their performance.

13.
Appl Biochem Biotechnol ; 194(2): 694-708, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34506005

ABSTRACT

This study aimed to investigate the phytoremediation potential promoted by Baccharis dracunculifolia DC. and Baccharis trimera (Less.) DC. in copper mining tailing area, in the Southern part of Brazil. The plants were selected considering their spontaneous growth in tailing area. The phytoremediation indexes including translocation factor (TF), bioconcentration factor (BCF), metal extraction ratio (MER), and plant effective number (PEN) were assessed. Both species showed higher concentrations of heavy metals in the roots than to the shoots. B. trimera has potential for phytoextraction of Zn, Cd, Cr, and Pb and phytostabilization of Ba and Ni, whereas B. dracunculifolia demonstrated potential for phytoextraction of Pb and phytostabilization of Cu, Zn, and Ba. B. trimera showed higher potential in phytoremediation of the metals such as Cu > Zn > Cr > Ni and Cd than the B. dracunculifolia plants. A smaller number B. trimera plants was required to remove 1 g of Cu, Zn, Cr, Pb, Ni, and Cd than B. dracunculifolia plants, and implies that B. trimera is more efficient for decontamination of the metals. Both species showed potential for phytoremediation of metals in the mining tailing area under study.


Subject(s)
Biodegradation, Environmental
14.
Appl Biochem Biotechnol ; 194(5): 2135-2150, 2022 May.
Article in English | MEDLINE | ID: mdl-35044646

ABSTRACT

Survival of Lactococcus lactis subsp. lactis R7, microencapsulated with whey and inulin, was analyzed when added to blueberry juice, milk, and cream. For 28 days, cell viability was evaluated for storage (4 °C), simulated gastrointestinal tract (GIT), and thermal resistance. All matrices demonstrated high cell concentration when submitted to GIT (11.74 and 12 log CFU mL-1), except for the blueberry juice. The thermal resistance analysis proved the need for microencapsulation, regardless of the food matrix. The results indicate that L. lactis R7 microcapsules have potential for application in different matrices and development of new probiotic products by thermal processing.


Subject(s)
Lactococcus lactis , Probiotics
15.
Environ Sci Pollut Res Int ; 26(23): 24132-24142, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31228062

ABSTRACT

Mining tailing areas may contain metal minerals such as Cu, Pb, Zn, Cr, and Cd at high concentrations and low nutrients for the growth of plants. This kind of conditions of the area, as well as lack of tailing structure, may limit the development of plants on these areas. Thus, the present study determined the metal, macronutrient, and micronutrient concentrations in the tissues of the roots and shoots of the Solanum viarum Dunal species as well as it evaluated the potential use of the plant for phytoremediation of mining tailing areas contaminated with heavy metals. The macronutrients, micronutrients, and heavy metals in the roots and shoots were determined by the digestion method with nitric and perchloric acid (HNO3-HClO4) and quantified by the ICP-OES. In S. viarum, the average concentrations of the metals presented in the dry biomass varied between the shoots and roots, being higher in the roots for metals such as Cu (229 mg kg-1), Zn (232 mg kg-1), Mn (251 mg kg-1), Cr (382 mg kg-1), Ni (178 mg kg-1), Pb (33 mg kg-1), and Ba (1123 mg kg-1). S. viarum indicates the possibility of a potential application in phytoremediation and treatment of areas contaminated with heavy metals.


Subject(s)
Environmental Restoration and Remediation/methods , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis , Solanum/chemistry , Biodegradation, Environmental , Biomass , Brazil , Metals, Heavy/pharmacokinetics , Plant Roots/chemistry , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/chemistry , Plant Shoots/drug effects , Plant Shoots/metabolism , Soil Pollutants/pharmacokinetics , Solanum/drug effects , Solanum/metabolism , Tissue Distribution
16.
Arch. endocrinol. metab. (Online) ; 68: e210204, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520081

ABSTRACT

ABSTRACT Objective: To study associations between polymorphisms in the angiotensin converting enzyme (ACE I/D), actinin 3 (ACTN3 R577X) and paraoxonase 1 (PON1 T(-107)C) genes and chronic diseases (diabetes and hypertension) in women. Materials and methods: Genomic DNA was extracted from saliva samples of 78 women between 18 and 59 years old used for genetic polymorphism screening. Biochemical data were collected from the medical records in Basic Health Units from Southern Brazil. Questionnaires about food consumption, physical activity level and socioeconomic status were applied. Results: The XX genotype of ACTN3 was associated with low HDL levels and high triglycerides, total cholesterol and glucose levels. Additionally, high triglycerides and LDL levels were observed in carriers of the TT genotype of PON1, and lower total cholesterol levels were associated to the CC genotype. As expected, women with diabetes/hypertense had increased body weight, BMI (p = 0.02), waist circumference (p = 0.01), body fat percentage, blood pressure (p = 0.02), cholesterol, triglycerides (p = 0.02), and blood glucose (p = 0.01), when compared to the control group. Conclusion: Both ACTN3 R577X and PON1 T(-107)C polymorphisms are associated with nutritional status and blood glucose and lipid levels in women with diabetes/hypertense. These results contribute to genetic knowledge about predisposition to obesity-related diseases.

17.
Arch Endocrinol Metab ; 63(3): 272-279, 2019.
Article in English | MEDLINE | ID: mdl-31038597

ABSTRACT

OBJECTIVE: The aims of this study were to investigate changes in serum paraoxonase 1 (PON1) activity in women at the pre and postmenopausal stages and its association with the PON1 C(-107)T polymorphism and food intake profile. SUBJECTS AND METHODS: A cross-sectional study with female patients aged between 35 and 59 years old was conducted. Women were divided into two groups: premenopausal (n = 40) and postmenopausal (n = 36). Women enrolled in the study had serum PON1, total cholesterol, HDL, LDL, glucose and HbA1c, as well as the BMI measured. Additionally, women were genotyped for the PON1 T(-107)C polymorphism and the food intake profile was obtained through interview. RESULTS: Glucose (p = 0.03), HbA1c (p = 0.002) and total cholesterol (p = 0.002)concentrations were higher in post than premenopausal women, however PON1 activity was not different (p > 0.05). Carriers of the C allele had higher PON1 activity (CC: 88.9 ± 6.5 U/mL and CT: 79.9 ± 4.7 U/mL) than women of the TT genotype (66.6 ± 5.9 U/mL) (p < 0.05). However, the model predicting PON1 activity was slightly better when genotype, total fat and cholesterol content in the diet were all included. CONCLUSION: In sum, we observed that the PON1 C(-107)T genotype was the major regulator of PON1 activity, and menopause had no effect on PON1 activity. The lipid and glycemic profile were altered in postmenopausal women.


Subject(s)
Aryldialkylphosphatase/blood , Eating , Polymorphism, Genetic/genetics , Postmenopause/blood , Premenopause/blood , Adult , Aryldialkylphosphatase/genetics , Cross-Sectional Studies , Female , Genotype , Humans , Postmenopause/metabolism , Premenopause/metabolism
18.
Ann Nutr Metab ; 53(2): 79-85, 2008.
Article in English | MEDLINE | ID: mdl-18852484

ABSTRACT

Fe (II) is a potential prooxidant in vivo and can induce cellular oxidative stress. Ascorbic acid (AA) is a powerful physiological antioxidant and, in the presence of free Fe (II), can exhibit prooxidant effects in vitro. However, in vivo prooxidant effects of Fe (II) and AA have not yet been indisputably demonstrated. Here we evaluate the potential toxic effect of supplementation of Fe (II) associated with AA. Nine healthy, nonsmoking male volunteers (20-31 years old) participated in the crossover study design. The volunteers were supplemented with either a dose of 2 g of AA, 150 mg of iron carbonyl or 2 g of AA plus 150 mg of iron carbonyl with a washout period of 15 days between each treatment. AA, iron, ferritin, thiobarbituric acid-reactive substances, catalase, delta-aminolevulinic dehydratase and SH thiol groups were measured in the blood of the volunteers. Plasma AA levels were increased at 2, 5 and 24 h after AA or AA plus iron ingestion. Plasma Fe levels were increased at 2 and 5 h in the AA plus iron group. Erythrocyte malondialdehyde levels decreased at 5 and 24 h after AA and 5 h after AA plus iron ingestion. Catalase activity from erythrocytes was increased 5 h after supplementation with AA plus iron. There was no significant difference between groups in the other biochemical parameters evaluated. Thus, the present study does not support the hypothesis that the combination of high plasma concentrations of AA and iron, or iron alone, could cause in vivo oxidative damage after a single supplementation dose.


Subject(s)
Ascorbic Acid/pharmacology , Iron, Dietary/pharmacology , Oxidative Stress/drug effects , Adult , Antioxidants/metabolism , Ascorbic Acid/adverse effects , Ascorbic Acid/blood , Ascorbic Acid/pharmacokinetics , Catalase/blood , Cross-Over Studies , Drug Interactions , Ferritins/blood , Humans , Iron/blood , Iron, Dietary/adverse effects , Iron, Dietary/blood , Iron, Dietary/pharmacokinetics , Male , Oxidation-Reduction , Porphobilinogen Synthase/blood , Thiobarbituric Acid Reactive Substances/analysis , Young Adult
19.
Environ Sci Pollut Res Int ; 25(28): 28312-28321, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30083896

ABSTRACT

Aquatic environments are widely affected by anthropogenic activities and efficient remediation of these areas requires detailed studies for each natural ecosystem. This research aimed to evaluate the natural phytoremediation potential of Hydrocotyle ranunculoides L., a floating aquatic macrophyte located in a polluted aquatic environment in South of the Rio Grande do Sul, Brazil. Nutrients such as P, K, Ca, Mg, and S and heavy metals such as Cu, Zn, Fe, Mn, Na, Cd, Cr, Ni, Pb, Al, As, Co, and V content in the roots and shoots of the plants were evaluated through nitric perchloric acid digestion (HNO3-HClO4) methods and quantified by ICP-OES. Bioconcentration factor (BCF), translocation factor (TF), plant effective number (PEN), and potential phytoremoval (mg m-2) were carried out. H. ranunculoides showed a substantial ability for phytoextracting P, Na, and As, since showed ability of uptake these elements from the water and translocate them to the shoots of the plants. H. ranunculoides also showed potential for application in rhizofiltration of Mg, S, Cu, Zn, Fe, Mn, Cd, Cr, Ni, Pb, Al, and V, since exhibited high potential to uptake higher levels in the roots. The highest potential for bioremoval (mg m-2) of the H. ranunculoides was detected for K, Ca, P (recommending thus the use for phytoextraction), Fe, and Al (highly recommended for rhizofiltration). Therefore, this species under study showed high potential for in situ phytoremediation at Santa Bárbara stream, and as a widespread species, it might be tested for phytoremediation in other sites.


Subject(s)
Centella/growth & development , Metals, Heavy/analysis , Rivers/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Brazil , Centella/chemistry , Plant Roots/chemistry , Plant Roots/growth & development
20.
J Trace Elem Med Biol ; 40: 37-45, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28159220

ABSTRACT

Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials.


Subject(s)
Enterococcus/chemistry , Enterococcus/metabolism , Selenium/analysis , Selenium/metabolism , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL