Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Nature ; 532(7598): 255-8, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27049945

ABSTRACT

Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM). Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism. Here we identify an unconventional pathway that supports redox homeostasis and growth during adaptation to anchorage independence. We observed that detachment from monolayer culture and growth as anchorage-independent tumour spheroids was accompanied by changes in both glucose and glutamine metabolism. Specifically, oxidation of both nutrients was suppressed in spheroids, whereas reductive formation of citrate from glutamine was enhanced. Reductive glutamine metabolism was highly dependent on cytosolic isocitrate dehydrogenase-1 (IDH1), because the activity was suppressed in cells homozygous null for IDH1 or treated with an IDH1 inhibitor. This activity occurred in absence of hypoxia, a well-known inducer of reductive metabolism. Rather, IDH1 mitigated mitochondrial ROS in spheroids, and suppressing IDH1 reduced spheroid growth through a mechanism requiring mitochondrial ROS. Isotope tracing revealed that in spheroids, isocitrate/citrate produced reductively in the cytosol could enter the mitochondria and participate in oxidative metabolism, including oxidation by IDH2. This generates NADPH in the mitochondria, enabling cells to mitigate mitochondrial ROS and maximize growth. Neither IDH1 nor IDH2 was necessary for monolayer growth, but deleting either one enhanced mitochondrial ROS and reduced spheroid size, as did deletion of the mitochondrial citrate transporter protein. Together, the data indicate that adaptation to anchorage independence requires a fundamental change in citrate metabolism, initiated by IDH1-dependent reductive carboxylation and culminating in suppression of mitochondrial ROS.


Subject(s)
Citric Acid/metabolism , Homeostasis , Isocitrate Dehydrogenase/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Reactive Oxygen Species/metabolism , Cell Adhesion , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Contact Inhibition , Cytosol/enzymology , Cytosol/metabolism , Extracellular Matrix/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/deficiency , Isocitrate Dehydrogenase/genetics , Isocitrates/metabolism , NADP/biosynthesis , Neoplasms/enzymology , Oxidation-Reduction , Oxidative Stress , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
3.
Bioorg Med Chem ; 28(23): 115791, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33059303

ABSTRACT

GlaxoSmithKline and Astex Pharmaceuticals recently disclosed the discovery of the potent H-PGDS inhibitor GSK2894631A 1a (IC50 = 9.9 nM) as part of a fragment-based drug discovery collaboration with Astex Pharmaceuticals. This molecule exhibited good murine pharmacokinetics, allowing it to be utilized to explore H-PGDS pharmacology in vivo. Yet, with prolonged dosing at higher concentrations, 1a induced CNS toxicity. Looking to attenuate brain penetration in this series, aza-quinolines, were prepared with the intent of increasing polar surface area. Nitrogen substitutions at the 6- and 8-positions of the quinoline were discovered to be tolerated by the enzyme. Subsequent structure activity studies in these aza-quinoline scaffolds led to the identification of 1,8-naphthyridine 1y (IC50 = 9.4 nM) as a potent peripherally restricted H-PGDS inhibitor. Compound 1y is efficacious in four in vivo inflammatory models and exhibits no CNS toxicity.


Subject(s)
Aza Compounds/chemistry , Enzyme Inhibitors/chemistry , Quinolines/chemistry , Animals , Binding Sites , Brain/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Stability , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Kinetics , Male , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Rats , Structure-Activity Relationship
4.
Nat Chem Biol ; 11(11): 878-86, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26436839

ABSTRACT

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in the cells of individuals with AML. Our study provides proof of concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia.


Subject(s)
Dihydropyridines/pharmacology , Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Pyrazoles/pharmacology , Allosteric Regulation , Allosteric Site , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , CpG Islands , Crystallography, X-Ray , Cytosine/chemistry , Cytosine/metabolism , DNA Methylation/drug effects , Dihydropyridines/chemistry , Dihydropyridines/pharmacokinetics , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Granulocytes/drug effects , Granulocytes/enzymology , Granulocytes/pathology , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Kinetics , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Models, Molecular , Mutation , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Primary Cell Culture , Protein Binding , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Xenograft Model Antitumor Assays
5.
Nat Chem Biol ; 10(3): 181-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24390428

ABSTRACT

Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.


Subject(s)
Aminopyridines/chemistry , Dipeptides/chemistry , Enzyme Inhibitors/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Administration, Oral , Allosteric Regulation , Amino Acid Motifs , Aminopyridines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Dipeptides/pharmacology , Disease Models, Animal , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Female , Heterografts , Humans , Mice , Mice, SCID , Models, Biological , Neoplasms , Protein Phosphatase 2C
6.
Bioorg Med Chem Lett ; 25(21): 4812-4819, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26195137

ABSTRACT

The IC50 of a beta-secretase (BACE-1) lead compound was improved ∼200-fold from 11 µM to 55 nM through the addition of a single methyl group. Computational chemistry, small molecule NMR, and protein crystallography capabilities were used to compare the solution conformation of the ligand under varying pH conditions to its conformation when bound in the active site. Chemical modification then explored available binding pockets adjacent to the ligand. A strategically placed methyl group not only maintained the required pKa of the piperidine nitrogen and filled a small hydrophobic pocket, but more importantly, stabilized the conformation best suited for optimized binding to the receptor.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Hydantoins/chemistry , Hydantoins/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Hydantoins/chemical synthesis , Methylation , Models, Molecular , Molecular Structure , Structure-Activity Relationship
7.
Nat Commun ; 15(1): 1164, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326375

ABSTRACT

The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular inflammasome sensor and an important clinical target against inflammation-driven human diseases. Recent studies have elucidated its transition from a closed cage to an activated disk-like inflammasome, but the intermediate activation mechanism remains elusive. Here we report the cryo-electron microscopy structure of NLRP3, which forms an open octamer and undergoes a ~ 90° hinge rotation at the NACHT domain. Mutations on open octamer's interfaces reduce IL-1ß signaling, highlighting its essential role in NLRP3 activation/inflammasome assembly. The centrosomal NIMA-related kinase 7 (NEK7) disrupts large NLRP3 oligomers and forms NEK7/NLRP3 monomers/dimers which is a critical step preceding the assembly of the disk-like inflammasome. These data demonstrate an oligomeric cooperative activation of NLRP3 and provide insight into its inflammasome assembly mechanism.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Cryoelectron Microscopy , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Proteins
8.
Biochemistry ; 52(26): 4563-77, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23731180

ABSTRACT

The human, cytosolic enzyme isocitrate dehydrogenase 1 (IDH1) reversibly converts isocitrate to α-ketoglutarate (αKG). Cancer-associated somatic mutations in IDH1 result in a loss of this normal function but a gain in a new or neomorphic ability to convert αKG to the oncometabolite 2-hydroxyglutarate (2HG). To improve our understanding of the basis for this phenomenon, we have conducted a detailed kinetic study of wild-type IDH1 as well as the known 2HG-producing clinical R132H and G97D mutants and mechanistic Y139D and (newly described) G97N mutants. In the reductive direction of the normal reaction (αKG to isocitrate), dead-end inhibition studies suggest that wild-type IDH1 goes through a random sequential mechanism, similar to previous reports on related mammalian IDH enzymes. However, analogous experiments studying the reductive neomorphic reaction (αKG to 2HG) with the mutant forms of IDH1 are more consistent with an ordered sequential mechanism, with NADPH binding before αKG. This result was further confirmed by primary kinetic isotope effects for which saturating with αKG greatly reduced the observed isotope effect on (D)(V/K)NADPH. For the mutant IDH1 enzyme, the change in mechanism was consistently associated with reduced efficiencies in the use of αKG as a substrate and enhanced efficiencies using NADPH as a substrate. We propose that the sum of these kinetic changes allows the mutant IDH1 enzymes to reductively trap αKG directly into 2HG, rather than allowing it to react with carbon dioxide and form isocitrate, as occurs in the wild-type enzyme.


Subject(s)
Brain Neoplasms/enzymology , Cytosol/enzymology , Isocitrate Dehydrogenase , Mutant Proteins , Brain Neoplasms/pathology , Cell Line, Tumor , Crystallography, X-Ray , Glutarates/chemistry , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Isocitrates/chemistry , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Kinetics , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation
9.
ACS Med Chem Lett ; 14(7): 955-961, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37465311

ABSTRACT

Myeloid cell leukemia-1 (MCL-1) is a member of the antiapoptotic BCL-2 proteins family and a key regulator of mitochondrial homeostasis. Overexpression of MCL-1 is found in many cancer cells and contributes to tumor progression, which makes it an attractive therapeutic target. Pursuing our previous study of macrocyclic indoles for the inhibition of MCL-1, we report herein the impact of both pyrazole and indole isomerism on the potency and overall properties of this family of compounds. We demonstrated that the incorporation of a fluorine atom on the naphthalene moiety was a necessary step to improve cellular potency and that, combined with the introduction of various side chains on the pyrazole, it enhanced solubility significantly. This exploration culminated in the discovery of compounds (Ra)-10 and (Ra)-15, possessing remarkable cellular potency and properties.

10.
J Med Chem ; 66(9): 6122-6148, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37114951

ABSTRACT

Avoidance of apoptosis is critical for the development and sustained growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family of proteins which is overexpressed in many cancers. Upregulation of Mcl-1 in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy. Therefore, pharmacological inhibition of Mcl-1 is regarded as an attractive approach to treating relapsed or refractory malignancies. Herein, we disclose the design, synthesis, optimization, and early preclinical evaluation of a potent and selective small-molecule inhibitor of Mcl-1. Our exploratory design tactics focused on structural modifications which improve the potency and physicochemical properties of the inhibitor while minimizing the risk of functional cardiotoxicity. Despite being in the "non-Lipinski" beyond-Rule-of-Five property space, the developed compound benefits from exquisite oral bioavailability in vivo and induces potent pharmacodynamic inhibition of Mcl-1 in a mouse xenograft model.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Humans , Mice , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Apoptosis , Hematologic Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism
11.
J Med Chem ; 65(15): 10419-10440, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35862732

ABSTRACT

Activated factor XI (FXIa) inhibitors are promising novel anticoagulants with low bleeding risk compared with current anticoagulants. The discovery of potent FXIa inhibitors with good oral bioavailability has been challenging. Herein, we describe our discovery effort, utilizing nonclassical interactions to improve potency, cellular permeability, and oral bioavailability by enhancing the binding while reducing polar atoms. Beginning with literature-inspired pyridine N-oxide-based FXIa inhibitor 1, the imidazole linker was first replaced with a pyrazole moiety to establish a polar C-H···water hydrogen-bonding interaction. Then, structure-based drug design was employed to modify lead molecule 2d in the P1' and P2' regions, with substituents interacting with key residues through various nonclassical interactions. As a result, a potent FXIa inhibitor 3f (Ki = 0.17 nM) was discovered. This compound demonstrated oral bioavailability in preclinical species (rat 36.4%, dog 80.5%, and monkey 43.0%) and displayed a dose-dependent antithrombotic effect in a rabbit arteriovenous shunt model of thrombosis.


Subject(s)
Factor XIa , Pyridines , Animals , Anticoagulants/chemistry , Anticoagulants/pharmacology , Dogs , Drug Design , Factor XIa/metabolism , Pyridines/pharmacology , Rabbits , Rats
12.
Biochemistry ; 50(21): 4804-12, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21524095

ABSTRACT

Heterozygously expressed single-point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2, respectively) render these dimeric enzymes capable of producing the novel metabolite α-hydroxyglutarate (αHG). Accumulation of αHG is used as a biomarker for a number of cancer types, helping to identify tumors with similar IDH mutations. With IDH1, it has been shown that one role of the mutation is to increase the rate of conversion from αKG to αHG. To improve our understanding of the function of this mutation, we have detailed the kinetics of the normal (isocitrate to αKG) and neomorphic (αKG to αHG) reactions, as well as the coupled conversion of isocitrate to αHG. We find that the mutant IDH1 is very efficient in this coupled reaction, with the ability to form αHG from isocitrate and NADP(+). The wild type/wild type IDH1 is also able to catalyze this conversion, though it is much more sensitive to concentrations of isocitrate. This difference in behavior can be attributed to the competitive binding between isocitrate and αKG, which is made more favorable for αKG by the neomorphic mutation at arginine 132. Thus, each partial reaction in the heterodimer is functionally isolated from the other. To test whether there is a cooperative effect resulting from the two subunits being in a dimer, we selectively inactivated each subunit with a secondary mutation in the NADP/H binding site. We observed that the remaining, active subunit was unaffected in its associated activity, reinforcing the notion of each subunit being functionally independent. This was further demonstrated using a monomeric form of IDH from Azotobacter vinelandii, which can be shown to gain the same neomorphic reaction when a homologous mutation is introduced into that protein.


Subject(s)
Glutarates/metabolism , Isocitrate Dehydrogenase/physiology , Mutation , Chromatography, High Pressure Liquid , Isocitrate Dehydrogenase/genetics , Models, Molecular , Mutagenesis , Tandem Mass Spectrometry
13.
J Med Chem ; 64(15): 11570-11596, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34279934

ABSTRACT

Selective cyclooxygenase (COX)-2 inhibitors have been extensively studied for colorectal cancer (CRC) chemoprevention. Celecoxib has been reported to reduce the incidence of colorectal adenomas and CRC but is also associated with an increased risk of cardiovascular events. Here, we report a series of gut-restricted, selective COX-2 inhibitors characterized by high colonic exposure and minimized systemic exposure. By establishing acute ex vivo 18F-FDG uptake attenuation as an efficacy proxy, we identified a subset of analogues that demonstrated statistically significant in vivo dose-dependent inhibition of adenoma progression and survival extension in an APCmin/+ mouse model. However, in vitro-in vivo correlation analysis showed their chemoprotective effects were driven by residual systemic COX-2 inhibition, rationalizing their less than expected efficacies and highlighting the challenges associated with COX-2-mediated CRC disease chemoprevention.


Subject(s)
Antineoplastic Agents/pharmacology , Celecoxib/pharmacology , Colorectal Neoplasms/drug therapy , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Etoricoxib/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Celecoxib/chemistry , Celecoxib/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Etoricoxib/chemistry , Etoricoxib/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship
14.
Protein Expr Purif ; 73(2): 167-76, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20457255

ABSTRACT

Phosphoinositide 3-kinases have been targeted for therapeutic research because they are key components of a cell signaling cascade controlling proliferation, growth, and survival. Direct activation of the PI3Kalpha pathway contributes to the development and progression of solid tumors in breast, endometrial, colon, ovarian, and gastric cancers. In the context of a drug discovery effort, the availability of a robust crystallographic system is a means to understand the subtle differences between ATP competitive inhibitor interactions with the active site and their selectivity against other PI3Kinase enzymes. To generate a suitable recombinant design for this purpose, a p85alpha-p110alpha fusion system was developed which enabled the expression and purification of a stoichiometrically homogeneous, constitutively active enzyme for structure determination with potent ATP competitive inhibitors (Raha et al., in preparation) [56]. This approach has yielded preparations with activity and inhibition characteristics comparable to those of the full-length PI3Kalpha from which X-ray diffracting crystals were grown with inhibitors bound in the active site.


Subject(s)
Class II Phosphatidylinositol 3-Kinases/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Animals , Artificial Gene Fusion , Baculoviridae/metabolism , Binding Sites , Cells, Cultured , Class II Phosphatidylinositol 3-Kinases/chemistry , Class II Phosphatidylinositol 3-Kinases/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Drug Design , Inhibitory Concentration 50 , Models, Molecular , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Spodoptera/cytology , Spodoptera/metabolism , X-Ray Diffraction
15.
Bioorg Med Chem Lett ; 20(5): 1779-82, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20122828

ABSTRACT

This Letter describes the one pot synthesis of tertiary carbinamine 3 and related analogs of brain penetrant BACE-1 inhibitors via the alkylation of the Schiff base intermediate 2. The methodology developed for this study provided a convenient and rapid means to explore the P1 region of these types of inhibitors, where the P1 group is installed in the final step using a one-pot two-step protocol. Further SAR studies led to the identification of 10 which is twofold more potent in vitro as compared to the lead compound. This inhibitor was characterized in a cisterna magna ported rhesus monkey model, where significant lowering of CSF Abeta40 was observed.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/enzymology , Enzyme Inhibitors/chemistry , Oxadiazoles/chemistry , Sulfonamides/chemistry , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Macaca mulatta , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacokinetics , Peptide Fragments/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics
16.
Bioorg Med Chem Lett ; 20(6): 1885-9, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20176482

ABSTRACT

The optimization of tertiary carbinamine derived inhibitors of BACE1 from its discovery as an unstable lead to low nanomolar cell active compounds is described. Five-membered heterocycles are reported as stable and potency enhancing linkers. In the course of this work, we have discovered a clear trend where the activity of inhibitors at a given assay pH is dependent on pK(a) of the amino group that interacts directly with the catalytic aspartates. The potency of compounds as inhibitors of Alphabeta production in a cell culture assay correlated much better with BACE1 enzyme potency measured at pH 7.5 than at pH 4.5.


Subject(s)
Amines/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid/metabolism , Enzyme Inhibitors/pharmacology , Catalysis , Humans , Models, Molecular , Structure-Activity Relationship
17.
Biochemistry ; 48(21): 4488-96, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19284778

ABSTRACT

BACE-1 (beta-site amyloid precursor protein cleaving enzyme), a prominent target in Alzheimer's disease drug discovery efforts, was surveyed using Tethering technology to discover small molecule fragment ligands that bind to the enzyme active site. Screens of a library of >15000 thiol-containing fragments versus a panel of BACE-1 active site cysteine mutants under redox-controlled conditions revealed several novel amine-containing fragments that could be selectively captured by subsets of the tethering sites. For one such hit class, defined by a central aminobenzylpiperidine (ABP) moiety, X-ray crystal structures of BACE mutant-disulfide conjugates revealed that the fragment bound by engaging both catalytic aspartates with hydrogen bonds. The affinities of ABP fragments were improved by structure-guided chemistry, first for conjugation as thiol-containing fragments and then for stand-alone, noncovalent inhibition of wild-type (WT) BACE-1 activity. Crystallography confirmed that the inhibitors bound in exactly the same mode as the disulfide-conjugated fragments that were originally selected from the screen. The ABP ligands represent a new type of nonpeptidic BACE-1 inhibitor motif that has not been described in the aspartyl protease literature and may serve as a starting point for the development of BACE-1-directed Alzheimer's disease therapeutics.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Drug Discovery/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Biocatalysis , Catalytic Domain , Cysteine , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Humans , Ligands , Models, Molecular , Molecular Conformation , Mutation , Peptides/chemistry , Piperidines/chemistry , Piperidines/metabolism , Structure-Activity Relationship
18.
J Pharmacol Exp Ther ; 328(1): 131-40, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18854490

ABSTRACT

beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/cerebrospinal fluid , Amyloid beta-Protein Precursor/antagonists & inhibitors , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Humans , Infusions, Intravenous , Macaca mulatta , Mice , Mice, Transgenic , Transfection
19.
Bioorg Med Chem Lett ; 19(17): 4993-5, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19640712

ABSTRACT

During our ongoing efforts to develop a small molecule inhibitor targeting the beta-amyloid cleaving enzyme (BACE-1), we discovered a class of compounds bearing an aminoimidazole motif. Initial optimization led to potent compounds that have high Pgp efflux ratios. Crystal structure-aided design furnished conformationally constrained compounds that are both potent and have relatively low Pgp efflux ratios. Computational studies performed after these optimizations suggest that the introduction of the constraint enhances potency via additional hydrophobic interactions rather than conformational restriction.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Imidazoles/chemistry , Protease Inhibitors/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid Precursor Protein Secretases/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Design , Humans , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Structure, Tertiary
20.
Bioorg Med Chem Lett ; 19(11): 2977-80, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19409780

ABSTRACT

We have developed a novel series of heteroaromatic BACE-1 inhibitors. These inhibitors interact with the enzyme in a unique fashion that allows for potent binding in a non-traditional paradigm. In addition to the elucidation of their binding profile, we have discovered a pH dependent effect on the binding affinity as a result of the intrinsic pK(a) of these inhibitors and the pH of the BACE-1 enzyme binding assay.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Heterocyclic Compounds/chemistry , Amyloid Precursor Protein Secretases/metabolism , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Hydrogen-Ion Concentration , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL