Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nature ; 585(7824): 298-302, 2020 09.
Article in English | MEDLINE | ID: mdl-32669707

ABSTRACT

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Subject(s)
Cell Nucleolus/enzymology , Cell Nucleolus/genetics , DNA, Ribosomal/genetics , RNA Polymerase II/metabolism , RNA, Untranslated/biosynthesis , RNA, Untranslated/genetics , Ribosomes/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Cell Line, Tumor , Cell Nucleolus/physiology , DNA Helicases/metabolism , DNA, Intergenic/genetics , Humans , Multifunctional Enzymes/metabolism , Protein Biosynthesis , R-Loop Structures , RNA Helicases/metabolism , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase I/metabolism , Ribonuclease H/metabolism , Ribosomes/chemistry , Ribosomes/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology
2.
J Transl Med ; 21(1): 158, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36855120

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies for the treatment of hematological malignancies experienced tremendous progress in the last decade. However, essential limitations need to be addressed to further improve efficacy and reduce toxicity to assure CAR-T cell persistence, trafficking to the tumor site, resistance to an hostile tumor microenvironment (TME), and containment of toxicity restricting production of powerful but potentially toxic bioproducts to the TME; the last could be achieved through contextual release upon tumor antigen encounter of factors capable of converting an immune suppressive TME into one conducive to immune rejection. METHODS: We created an HER2-targeting CAR-T (RB-312) using a clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) system, which induces the expression of the IL-12 heterodimer via conditional transcription of its two endogenous subunits p35 and p40. This circuit includes two lentiviral constructs. The first one (HER2-TEV) expresses an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3z co-stimulatory domains linked to the tobacco etch virus (TEV) protease and two single guide RNAs (sgRNA) targeting the interleukin (IL)-12A and IL12B transcription start site (TSS), respectively. The second construct (LdCV) encodes linker for activation of T cells (LAT) fused to nuclease-deactivated Streptococcus Pyogenes Cas9 (dCas9)-VP64-p65-Rta (VPR) via a TEV-cleavable sequence (TCS). Activation of the CAR brings HER2-TEV in close proximity to LdCV releasing dCas9 for nuclear localization. This conditional circuit leads to conditional and reversible induction of the IL-12/p70 heterodimer. RB-312 was compared in vitro to controls (cRB-312), lacking the IL-12 sgRNAs and conventional HER2 CAR (convCAR). RESULTS: The inducible CRISPRa system activated endogenous IL-12 expression resulting in enhanced secondary interferon (FN)-γ production, cytotoxicity, and CAR-T proliferation in vitro, prolonged in vivo persistence and greater suppression of HER2+ FaDu oropharyngeal cancer cell growth compared to the conventional CAR-T cell product. No systemic IL-12 was detected in the peripheral circulation. Moreover, the combination with programmed death ligand (PD-L1) blockade demonstrated robust synergistic effects. CONCLUSIONS: RB-312, the first clinically relevant product incorporating a CRISPRa system with non-gene editing and reversible upregulation of endogenous gene expression that promotes CAR-T cells persistence and effectiveness against HER2-expressing tumors. The autocrine effects of reversible, nanoscale IL-12 production limits the risk of off-tumor leakage and systemic toxicity.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , B7-H1 Antigen , CD28 Antigens , Interleukin-12/genetics , Ligands , Neoplasms/therapy , Drug Delivery Systems
3.
J Transl Med ; 20(1): 535, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36401279

ABSTRACT

Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.


Subject(s)
Gene Editing , Genetic Therapy , RNA, Small Interfering , Gene Expression
4.
J Transl Med ; 19(1): 9, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407613

ABSTRACT

Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.


Subject(s)
Immunotherapy , Neoplasms , Cell Hypoxia , Humans , Hypoxia , T-Lymphocytes , Tumor Microenvironment
5.
J Transl Med ; 19(1): 459, 2021 11 07.
Article in English | MEDLINE | ID: mdl-34743703

ABSTRACT

BACKGROUND: Adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells combined with checkpoint inhibition may prevent T cell exhaustion and improve clinical outcomes. However, the approach is limited by cumulative costs and toxicities. METHODS: To overcome this drawback, we created a CAR-T (RB-340-1) that unites in one product the two modalities: a CRISPR interference-(CRISPRi) circuit prevents programmed cell death protein 1 (PD-1) expression upon antigen-encounter. RB-340-1 is engineered to express an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3ζ co-stimulatory domains linked to the tobacco etch virus (TEV) protease and a single guide RNA (sgRNA) targeting the PD-1 transcription start site (TSS). A second constructs includes linker for activation of T cells (LAT) fused to nuclease-deactivated spCas9 (dCas9)-Kruppel-associated box (KRAB) via a TEV-cleavable sequence (TCS). Upon antigen encounter, the LAT-dCas9-KRAB (LdCK) complex is cleaved by TEV allowing targeting of dCas9-KRAB to the PD-1 gene TSS. RESULTS: Here, we show that RB-340-1 consistently demonstrated higher production of homeostatic cytokines, enhanced expansion of CAR-T cells in vitro, prolonged in vivo persistence and more efficient suppression of HER2+ FaDu oropharyngeal cancer growth compared to the respective conventional CAR-T cell product. CONCLUSIONS: As the first application of CRISPRi toward a clinically relevant product, RB-340-1 with the conditional, non-gene editing and reversible suppression promotes CAR-T cells resilience to checkpoint inhibition, and their persistence and effectiveness against HER2-expressing cancer xenografts.


Subject(s)
Neoplasms , Single-Chain Antibodies , CD28 Antigens/genetics , Cell Line, Tumor , Humans , Immunotherapy, Adoptive , RNA, Guide, Kinetoplastida , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
6.
Int J Mol Sci ; 22(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34639168

ABSTRACT

Over the last decade remarkable progress has been made in enhancing the efficacy of CAR T therapies. However, the clinical benefits are still limited, especially in solid tumors. Even in hematological settings, patients that respond to CAR T therapies remain at risk of relapsing due to several factors including poor T-cell expansion and lack of long-term persistence after adoptive transfer. This issue is even more evident in solid tumors, as the tumor microenvironment negatively influences the survival, infiltration, and activity of T-cells. Limited persistence remains a significant hindrance to the development of effective CAR T therapies due to several determinants, which are encountered from the cell manufacturing step and onwards. CAR design and ex vivo manipulation, including culture conditions, may play a pivotal role. Moreover, previous chemotherapy and lymphodepleting treatments may play a relevant role. In this review, the main causes for decreased persistence of CAR T-cells in patients will be discussed, focusing on the molecular mechanisms underlying T-cell exhaustion. The approaches taken so far to overcome these limitations and to create exhaustion-resistant T-cells will be described. We will also examine the knowledge gained from several key clinical trials and highlight the molecular mechanisms determining T-cell stemness, as promoting stemness may represent an attractive approach to improve T-cell therapies.


Subject(s)
Immunotherapy, Adoptive/standards , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Animals , Humans , Neoplasms/immunology
7.
PLoS Biol ; 12(10): e1001968, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25313826

ABSTRACT

At blocked replication forks, homologous recombination mediates the nascent strands to switch template in order to ensure replication restart, but faulty template switches underlie genome rearrangements in cancer cells and genomic disorders. Recombination occurs within DNA packaged into chromatin that must first be relaxed and then restored when recombination is completed. The chromatin assembly factor 1, CAF-1, is a histone H3-H4 chaperone involved in DNA synthesis-coupled chromatin assembly during DNA replication and DNA repair. We reveal a novel chromatin factor-dependent step during replication-coupled DNA repair: Fission yeast CAF-1 promotes Rad51-dependent template switches at replication forks, independently of the postreplication repair pathway. We used a physical assay that allows the analysis of the individual steps of template switch, from the recruitment of recombination factors to the formation of joint molecules, combined with a quantitative measure of the resulting rearrangements. We reveal functional and physical interplays between CAF-1 and the RecQ-helicase Rqh1, the BLM homologue, mutations in which cause Bloom's syndrome, a human disease associating genome instability with cancer predisposition. We establish that CAF-1 promotes template switch by counteracting D-loop disassembly by Rqh1. Consequently, the likelihood of faulty template switches is controlled by antagonistic activities of CAF-1 and Rqh1 in the stability of the D-loop. D-loop stabilization requires the ability of CAF-1 to interact with PCNA and is thus linked to the DNA synthesis step. We propose that CAF-1 plays a regulatory role during template switch by assembling chromatin on the D-loop and thereby impacting the resolution of the D-loop.


Subject(s)
DNA Helicases/metabolism , DNA Replication , Homologous Recombination , Nuclear Proteins/metabolism , Rad51 Recombinase/metabolism , Schizosaccharomyces pombe Proteins/metabolism , DNA Repair , Genome, Fungal , Proliferating Cell Nuclear Antigen/metabolism , Schizosaccharomyces
8.
J Transl Med ; 19(1): 87, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33632223
9.
PLoS Genet ; 8(10): e1002976, 2012.
Article in English | MEDLINE | ID: mdl-23093942

ABSTRACT

Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology) indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination.


Subject(s)
DNA Repair , DNA Replication , Homologous Recombination , Chromosome Aberrations , DNA Helicases/metabolism , DNA Mismatch Repair , Gene Order , Genomic Instability , Inverted Repeat Sequences , Mutation , RNA-Binding Protein FUS/metabolism , RecQ Helicases/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Translocation, Genetic
10.
Cancer Cell ; 41(10): 1689-1695, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37714150

ABSTRACT

Successful implementation of adoptive cell therapy (ACT) of cancer requires comprehensively addressing biological and practical challenges. This approach has been largely overlooked, resulting in a gap between the potential of ACT and its actual effectiveness. We summarize the most promising technical strategies in creating an "ideal" ACT product, focusing on chimeric antigen receptor (CAR)-engineered cells. Since many requirements for effective ACT are common to most cancers, what we outline here might have a broader impact.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics
11.
Cancers (Basel) ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35158804

ABSTRACT

Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.

12.
Front Immunol ; 11: 604967, 2020.
Article in English | MEDLINE | ID: mdl-33584676

ABSTRACT

In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms/diagnostic imaging , Optical Imaging , Tumor Microenvironment , Animals , Biomarkers, Tumor/genetics , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Immunophenotyping , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Phenotype , Predictive Value of Tests , Transcriptome
13.
Sci Rep ; 10(1): 16034, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994470

ABSTRACT

Retrotransposons can represent half of eukaryotic genomes. Retrotransposon dysregulation destabilizes genomes and has been linked to various human diseases. Emerging regulators of retromobility include RNA-DNA hybrid-containing structures known as R-loops. Accumulation of these structures at the transposons of yeast 1 (Ty1) elements has been shown to increase Ty1 retromobility through an unknown mechanism. Here, via a targeted genetic screen, we identified the rnh1Δ rad27Δ yeast mutant, which lacked both the Ty1 inhibitor Rad27 and the RNA-DNA hybrid suppressor Rnh1. The mutant exhibited elevated levels of Ty1 cDNA-associated RNA-DNA hybrids that promoted Ty1 mobility. Moreover, in this rnh1Δ rad27Δ mutant, but not in the double RNase H mutant rnh1Δ rnh201Δ, RNA-DNA hybrids preferentially existed as duplex nucleic acid structures and increased Ty1 mobility in a Rad52-dependent manner. The data indicate that in cells lacking RNA-DNA hybrid and Ty1 repressors, elevated levels of RNA-cDNA hybrids, which are associated with duplex nucleic acid structures, boost Ty1 mobility via a Rad52-dependent mechanism. In contrast, in cells lacking RNA-DNA hybrid repressors alone, elevated levels of RNA-cDNA hybrids, which are associated with triplex nucleic acid structures, boost Ty1 mobility via a Rad52-independent process. We propose that duplex and triplex RNA-DNA hybrids promote transposon mobility via Rad52-dependent or -independent mechanisms.


Subject(s)
R-Loop Structures/genetics , Retroelements/genetics , Retroelements/physiology , DNA, Complementary/genetics , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , RNA/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Recombination, Genetic/genetics , Ribonuclease H/metabolism , Ribonuclease H/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
Nucleus ; 8(2): 162-181, 2017 Mar 04.
Article in English | MEDLINE | ID: mdl-28406751

ABSTRACT

Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci.


Subject(s)
DNA/chemistry , DNA/genetics , G-Quadruplexes , Genetic Loci/genetics , Repetitive Sequences, Nucleic Acid , DNA Transposable Elements/genetics , Humans , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL