ABSTRACT
Background and Objectives. Retinitis pigmentosa (RP) is the most common inherited rod-cone dystrophy (RCD), resulting in nyctalopia, progressive visual field, and visual acuity decay in the late stages. The autosomal dominant form (ADRP) accounts for about 20% of RPs. Among the over 30 genes found to date related to ADRP, RP1 pathogenic variants have been identified in 5-10% of cases. In a cohort of RCD patients from the Palermo province on the island of Sicily, we identified a prevalent nonsense variant in RP1, which was associated with ADRP. The objective of our study was to analyse the clinical and molecular data of this patient cohort and to evaluate the potential presence of a founder effect. Materials and Methods. From 2005 to January 2023, 84 probands originating from Western Sicily (Italy) with a diagnosis of RCD or RP and their relatives underwent deep phenotyping, which was performed in various Italian clinical institutions. Molecular characterisation of patients and familial segregation of pathogenic variants were carried out in different laboratories using Sanger and/or next-generation sequencing (NGS). Results. Among 84 probands with RCD/RP, we found 28 heterozygotes for the RP1 variant c.2219C>G, p.Ser740* ((NM_006269.2)*, which was therefore significantly prevalent in this patient cohort. After a careful interview process, we ascertained that some of these patients shared the same pedigree. Therefore, we were ultimately able to define 20 independent family groups with no traceable consanguinity. Lastly, analysis of clinical data showed, in our patients, that the p.Ser740* nonsense variant was often associated with a late-onset and relatively mild phenotype. Conclusions. The high prevalence of the p.Ser740* variant in ADRP patients from Western Sicily suggests the presence of a founder effect, which has useful implications for the molecular diagnosis of RCD in patients coming from this Italian region. This variant can be primarily searched for in RP-affected subjects displaying compatible modes of transmission and phenotypes, with an advantage in terms of the required costs and time for analysis. Moreover, given its high prevalence, the RP1 p.Ser740* variant could represent a potential candidate for the development of therapeutic strategies based on gene editing or translational read-through therapy for suppression of nonsense variants.
Subject(s)
Cone-Rod Dystrophies , Retinitis Pigmentosa , Humans , Cone-Rod Dystrophies/genetics , Sicily/epidemiology , Founder Effect , Eye Proteins , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Phenotype , Pedigree , Mutation , DNA Mutational Analysis , Microtubule-Associated Proteins/geneticsABSTRACT
PURPOSE: Usher syndrome (USH) is an autosomal recessive disorder characterized by congenital sensorineural hearing impairment and retinitis pigmentosa. Classification distinguishes three clinical types of which type I (USH1) is the most severe, with vestibular dysfunction as an added feature. To date, 15 genes and 3 loci have been identified with the USH1G gene being an uncommon cause of USH. We describe an atypical USH1G-related phenotype caused by a novel homozygous missense variation in a patient with profound hearing impairment and relatively mild retinitis pigmentosa, but no vestibular dysfunction. METHODS: A 26-year-old female patient with profound congenital sensorineural hearing loss, nyctalopia and retinitis pigmentosa was studied. Audiometric, vestibular and ophthalmologic examination was performed. A panel of 13 genes was tested by next-generation sequencing (NGS). RESULTS: While the hearing loss was confirmed to be profound, the vestibular function resulted normal. Although typical retinitis pigmentosa was present, the age at onset was unusually late for USH1 syndrome. A novel homozygous missense variation (c.1187T>A, p.Leu396Gln) in the USH1G gene has been identified as causing the disease in our patient. CONCLUSIONS: Genetic and phenotypic heterogeneity are very common in both isolated and syndromic retinal dystrophies and sensorineural hearing loss. Our findings widen the spectrum of USH allelic disorders and strength the concept that variants in genes that are classically known as underlying one specific clinical USH subtype might result in unexpected phenotypes.