Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Publication year range
1.
J Chem Ecol ; 50(5-6): 214-221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38396141

ABSTRACT

The bee louse Braula spp. had until recently a distribution coincident with its host the honey bee. The adult fly usually attaches to a worker honey bee and steals food from its mouth. However, not all worker bees carry Braula spp. and the mechanism used by Braula spp. to select hosts is not well understood. Using choice remounting bioassays and chemical analyses, we determined host selection and the cues used by B. coeca, a species associated with the African honey bee Apis mellifera scutellata. Braula coeca successfully remounted bees from which they were initially removed and preferred their mandibular gland pheromones (MDG) over those of bees not carrying them. The bee lice did not show any preference for the cuticular hydrocarbons of both types of workers. Chemical analyses of the MDG extracts, revealed quantitative differences between the two categories of workers, with workers carrying B. coeca having more of the queen substance (9-oxo-2(E)-decenoic acid) and worker substance (10-hydroxy-2(E)-decenoic). Braula coeca showed a dose response to the queen substance, indicating its ability to use host derived kairomones as cues that allowed it to benefit from trophallactic dominance by individuals that have a higher probability of being fed by other workers.


Subject(s)
Pheromones , Animals , Bees/parasitology , Bees/physiology , Pheromones/metabolism , Pheromones/chemistry , Diptera/physiology , Hydrocarbons/metabolism , Hydrocarbons/chemistry , Host-Parasite Interactions , Behavior, Animal/drug effects , Fatty Acids, Monounsaturated/metabolism
2.
J Chem Ecol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976099

ABSTRACT

Tsetse flies are vectors of the parasite trypanosoma that cause the neglected tropical diseases human and animal African trypanosomosis. Semiochemicals play important roles in the biology and ecology of tsetse flies. Previous reviews have focused on olfactory-based attractants of tsetse flies. Here, we present an overview of the identification of repellents and their development into control tools for tsetse flies. Both natural and synthetic repellents have been successfully tested in laboratory and field assays against specific tsetse fly species. Thus, these repellents presented as innovative mobile tools offer opportunities for their use in integrated disease management strategies.

3.
Mol Ecol ; 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37740659

ABSTRACT

Quantitative real-time polymerase chain reaction (qPCR) is a method widely used to determine changes and differences in gene expression. As target gene expression is most often quantified relative to the expression of reference genes, the validation of suitable reference genes is of critical importance. In practice, however, such validation might not be thoroughly conducted if the same species and the same tissue or body parts are used for qPCR experiments. Here we show, that qPCR reference genes published for workers of European honey bee (Apis mellifera) subspecies fail to be stably expressed in workers of the African subspecies Apis mellifera scutellata. This is the case even when the sampled workers are in the same life stage, the same organ was dissected and the same reagents were used. Thus, reference genes need to be thoroughly re-tested before they can be used as suitable references even when the only thing that changes is the subspecies used.

4.
J Chem Ecol ; 48(4): 370-383, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35257255

ABSTRACT

Kairomones are semiochemicals that are emitted by an organism and which mediate interspecific interaction that is of benefit to an organism of another species that receives these chemical substances. Parasitoids find and recognize their hosts through eavesdropping on the kairomones emitted from the by-products or the body of the host. Hemipteran insect pests feed on plant sap and excrete the digested plant materials as honeydew. Honeydew serves as a nutritional food source for parasitoids and a medium for micro-organisms whose activity induces the release of volatiles exploited by parasitoids for host location. The parasitoid Encarsia formosa preferentially parasitizes its host, the greenhouse whitefly, Trialeurodes vaporariorum, on tomato Solanum lycopersicum, but little is known about the chemicals that mediate these interactions. We investigated the olfactory responses of the parasitoid E. formosa to odours from honeydew and nymphs of T. vaporariorum in a Y-tube olfactometer. Arrestment behaviour of the parasitoid to honeydew and nymph extracts, as well as to synthetic hydrocarbons, was also observed in Petri-dish bioassays. We found that T. vaporariorum honeydew volatiles attracted the parasitoid E. formosa but odours from the whitefly nymphs did not. We also found that the parasitoid spent more time searching on areas treated with extracts of honeydew and nymphs than on untreated areas. Gas-chromatography-mass spectrometric analysis revealed that the honeydew volatiles contained compounds such as (Z)-3-hexenol, δ-3-carene, 3-octanone, α-phellandrene, methyl salicylate, ß-ocimene, ß-myrcene, and (E)-ß-caryophyllene which are known to be attractive to E. formosa. The cuticular extracts of the nymphs predominantly contained alkanes, alkenes, and esters. Among the alkanes, synthetic nonacosane arrested the parasitoid. Our findings are discussed in relation to how the parasitoid E. formosa uses these chemicals to locate its host, T. vaporariorum.


Subject(s)
Hemiptera , Hymenoptera , Solanum lycopersicum , Wasps , Alkanes , Animals , Cues , Host-Parasite Interactions , Nymph , Pheromones , Plant Extracts , Taiwan , Wasps/physiology
5.
Parasitol Res ; 121(1): 267-274, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34988669

ABSTRACT

Hypopharyngeal gland (HPG) development in honey bee workers is primarily age-dependent and changes according to the tasks performed in the colony. HPG activity also depends on colony requirements and is flexible in relation to the need for feeding brood. Very little is known about HPG development in the honey bee subspecies found in Southern Africa. We examined HPG development in Apis mellifera scutellata and A. m. capensis, including A. m. scutellata colonies infested with an invasive parasitic clonal lineage of A. m. capensis known to manipulate food provisioning to the parasitic larvae by their A.m. scutellata hosts, under natural in-hive conditions in bees aged 0 to 14 days using light microscopy. We found marked differences in acini size (berry-like clusters of secretory cells) and the age at which maximum HPG development occurred between the subspecies and in the presence of the parasite. In A. m. scutellata workers, acini reached maximum size at 6 days. The acini of A. m. capensis workers were larger (up to double) than those of A. m. scutellata and reached maximum size at 8 days, while the HPG acini in A. m. scutellata workers infested with A. m. capensis clones reached development sizes similar to those of A. m. capensis at day 10 and were 1.5 times larger than those of uninfested A. m. scutellata. This provides foundational insights into a functional response affecting the development of the HPG most likely associated with brood pheromone composition and how this is altered in the presence of a social parasite.


Subject(s)
Pheromones , Africa, Southern , Animals , Bees , Larva
6.
J Exp Biol ; 224(Pt 2)2021 01 27.
Article in English | MEDLINE | ID: mdl-33443048

ABSTRACT

The honeybee nest parasite Aethina tumida (small hive beetle) uses behavioural mimicry to induce trophallactic feeding from its honeybee hosts. Small hive beetles are able to induce honeybee workers to share the carbohydrate-rich contents of their crops, but it is not clear whether the beetles are able to induce to workers to feed them the protein-rich hypopharyngeal glandular secretions fed to the queen, larvae and other nest mates. Protein is a limiting macronutrient in an insect's diet, essential for survival, growth and fecundity. Honeybees obtain protein from pollen, which is consumed and digested by nurse bees. They then distribute the protein to the rest of the colony in the form of hypopharyngeal gland secretions. Using 14C-phenylalanine as a qualitative marker for protein transfer, we show that small hive beetles successfully induce worker bees to feed them the protein-rich secretions of their hypopharyngeal glands during trophallaxis, and that females are more successful than males in inducing the transfer of these protein-rich secretions. Furthermore, behavioural observations demonstrated that female beetles do not preferentially interact with a specific age cohort of bees when soliciting food, but males tend to be more discriminant and avoid the more aggressive and active older bees.


Subject(s)
Coleoptera , Prisoners , Aggression , Animals , Bees , Female , Humans , Larva , Male , Pollen
7.
J Chem Ecol ; 47(2): 192-203, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33452961

ABSTRACT

Natural enemies locate their herbivorous host and prey through kairomones emitted by host plants and herbivores. These kairomones could be exploited to attract and retain natural enemies in crop fields for insect pest control. The parasitoid Encarsia formosa preferentially parasitises its whitefly host, Trialeurodes vaporariorum, a major pest of tomato Solanum lycopersicum, thus offering an effective way to improve whitefly control. However, little is known about the chemical interactions that occur in E. formosa-T. vaporariorum-S. lycopersicum tritrophic system. Using behavioural assays and chemical analyses, we investigated the kairomones mediating attraction of the parasitoid to host-infested tomato plants. In Y-tube olfactometer bioassays, unlike volatiles of healthy tomato plants, those of T. vaporariorum-infested tomato plants attracted E. formosa, and this response varied with host infestation density. Coupled gas chromatography/mass spectrometric analyses revealed that host infestation densities induced varying qualitative and quantitative differences in volatile compositions between healthy and T. vaporariorum adult-infested tomato plants. Bioassays using synthetic chemicals revealed the attractiveness of 3-carene, ß-ocimene, ß-myrcene and α-phellandrene to the parasitoid, and the blend of the four compounds elicited the greatest attraction. Our results suggest that these terpenes could be used as an attractant lure to recruit the parasitoid E. formosa for the control of whiteflies in tomato crop fields.


Subject(s)
Hemiptera/parasitology , Solanum lycopersicum/physiology , Volatile Organic Compounds , Wasps/physiology , Animals , Female , Host-Parasite Interactions , Pheromones , Smell
8.
Molecules ; 26(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562181

ABSTRACT

The African weaver ant, Oecophylla longinoda, is used as a biological control agent for the management of pests. The ant has several exocrine glands in the abdomen, including Dufour's, poison, rectal, and sternal glands, which are associated with pheromone secretions for intra-specific communication. Previous studies have analyzed the gland secretions of Dufour's and poison glands. The chemistry of the rectal and sternal glands is unknown. We re-analyzed the secretions from Dufour's and poison glands plus the rectal and sternal glands to compare their chemistries and identify additional components. We used the solid-phase microextraction (SPME) technique to collect gland headspace volatiles and solvent extraction for the secretions. Coupled gas chromatography-mass spectrometry (GC-MS) analysis detected a total of 78 components, of which 62 were being reported for the first time. These additional components included 32 hydrocarbons, 12 carboxylic acids, 5 aldehydes, 3 alcohols, 2 ketones, 4 terpenes, 3 sterols, and 1 benzenoid. The chemistry of Dufour's and poison glands showed a strong overlap and was distinct from that of the rectal and sternal glands. The different gland mixtures may contribute to the different physiological and behavioral functions in this ant species.


Subject(s)
Ants/chemistry , Exocrine Glands/chemistry , Pest Control, Biological , Abdomen , Alcohols/chemistry , Alcohols/isolation & purification , Aldehydes/chemistry , Aldehydes/isolation & purification , Animals , Ants/metabolism , Carboxylic Acids/chemistry , Carboxylic Acids/isolation & purification , Gas Chromatography-Mass Spectrometry , Hydrocarbons/chemistry , Hydrocarbons/isolation & purification , Ketones/chemistry , Ketones/isolation & purification , Pheromones/biosynthesis , Pheromones/chemistry , Pheromones/isolation & purification , Solid Phase Microextraction , Sterols/chemistry , Sterols/isolation & purification , Terpenes/chemistry , Terpenes/isolation & purification
9.
Mol Biol Evol ; 36(3): 516-526, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30624681

ABSTRACT

The evolution of altruism in complex insect societies is arguably one of the major transitions in evolution and inclusive fitness theory plausibly explains why this is an evolutionary stable strategy. Yet, workers of the South African Cape honey bee (Apis mellifera capensis) can reverse to selfish behavior by becoming social parasites and parthenogenetically producing female offspring (thelytoky). Using a joint mapping and population genomics approach, in combination with a time-course transcript abundance dynamics analysis, we show that a single nucleotide polymorphism at the mapped thelytoky locus (Th) is associated with the iconic thelytokous phenotype. Th forms a linkage group with the ecdysis-triggering hormone receptor (Ethr) within a nonrecombining region under strong selection in the genome. A balanced detrimental allele system plausibly explains why the trait is specific to A. m. capensis and cannot easily establish itself into genomes of other honey bee subspecies.


Subject(s)
Bees/genetics , Parthenogenesis/genetics , Altruism , Animals , Female , Polymorphism, Single Nucleotide , Selection, Genetic
10.
Chem Senses ; 45(8): 635-644, 2020 11 07.
Article in English | MEDLINE | ID: mdl-32866968

ABSTRACT

Visual and olfactory communications are vital for coordinated group hunting in most animals. To hunt for prey, the group-raiding termite specialist ant Megaponera analis, which lacks good vision, must first confirm the presence or absence of conspecific raiders. Here, we show that M. analis uses olfactory cues for intraspecific communication and showed greater preference for conspecific odors over clean air (blank) or odors from its termite prey. Chemical analysis of ant volatiles identified predominantly short-chained hydrocarbons. Electrophysiological analysis revealed differential sensory detection of the odor compounds, which were confirmed in behavioral olfactometric choice assays with odor bouquets collected from major and minor castes and the 2 most dominant volatiles and n-undecane n-tridecane. A comparative analysis of the cuticular hydrocarbon profile with those of the short-chained odor bouquet of different populations shows a high divergence in the long-chained profile and a much-conserved short-chained odor bouquet. This suggests that there is less selection pressure for divergence and individual recognition in the short- than the long-chained odor profiles. We conclude that olfactory communication serves as an alternative to visual or sound communication, especially during group raids in M. analis when ants are not in direct contact with one another.


Subject(s)
Hydrocarbons/analysis , Odorants/analysis , Animals , Ants , Volatilization
11.
Insectes Soc ; 67(1): 127-138, 2020 Feb.
Article in English | MEDLINE | ID: mdl-33311731

ABSTRACT

Meiotic recombination is an essential component of eukaryotic sexual reproduction but its frequency varies within and between genomes. Although it is well-established that honey bees have a high recombination rate with about 20 cM/Mbp, the proximate and ultimate causes of this exceptional rate are poorly understood. Here, we describe six linkage maps of the Western Honey Bee Apis mellifera that were produced with consistent methodology from samples from distinct parts of the species' near global distribution. We compared the genome-wide rates and distribution of meiotic crossovers among the six maps and found considerable differences. Overall similarity of local recombination rates among our samples was unrelated to geographic or phylogenetic distance of the populations that our samples were derived from. However, the limited sampling constrains the interpretation of our results because it is unclear how representative these samples are. In contrast to previous studies, we found only in two datasets a significant relation between local recombination rate and GC content. Focusing on regions of particularly increased or decreased recombination in specific maps, we identified several enriched gene ontologies in these regions and speculate about their local adaptive relevance. These data are contributing to an increasing comparative effort to gain an understanding of the intra-specific variability of recombination rates and their evolutionary role in honey bees and other social insects.

12.
J Therm Biol ; 89: 102534, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32364979

ABSTRACT

The African coffee white stem borer Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae) is a destructive insect pest of Arabica coffee trees in African highlands. Our study aims to provide information on the pest biology as influenced by temperature, determine thermal thresholds, and provide life table parameters for M. leuconotus reared in the laboratory. The life cycle of M. leuconotus was studied at seven constant temperatures in the range 15-35 °C, with 80 ± 5% RH and a photoperiod of L:D 12:12. Linear and nonlinear models were fitted to laboratory data to describe the impact of temperature on M. leuconotus development, mortality, fecundity and senescence. The complete life cycle was obtained between 18 and 30 °C, with the egg incubation period ranging 10.8-29.2 days. The development time was longest for the larva, with 194.2 days at 30 °C and 543.1 days at 18 °C. The minimum temperature threshold (Tmin) was estimated at 10.7, 10.0 and 11.5 °C, for egg, larva and pupa, respectively. The maximum temperature threshold (Tmax) was estimated at 37.4, 40.6 and 40.0 °C for egg, larva and pupa, respectively. The optimum temperature for immature stage survival was estimated between 23.0 and 23.9 °C. The highest fecundity was 97.8 eggs per female at 23 °C. Simulated life table parameters showed the highest net reproductive rate (Ro) of 11.8 daughters per female at 26 °C and maximal intrinsic rate of increase (rm) between 26 and 28 °C, with a value of 0.008. Our results will help understanding M. leuconotus biology as influenced by temperature and may be used to predict the distribution and infestation risk under climate warming for this critical coffee pest.


Subject(s)
Biomass , Coleoptera/physiology , Fertility , Models, Theoretical , Thermotolerance , Animals , Coffea/parasitology , Coleoptera/growth & development , Coleoptera/pathogenicity , Female , Life Cycle Stages , Longevity , Male
13.
J Chem Ecol ; 45(11-12): 934-945, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31755021

ABSTRACT

The African citrus triozid, Trioza erytreae Del Guercio (Hemiptera: Triozidae) is one of the primary vectors of the bacterium Candidatus Liberibacter spp. which causes citrus greening, a disease of global economic importance in citrus production. Despite its economic importance, little is known about its chemical ecology. Here, we used behavioral assays and chemical analysis to study the chemical basis of interaction between T. erytreae and one of its preferred host plants, Citrus jambhiri. In dual choice Y-tube olfactometer assays, lemon leaf odors attracted females but not males compared to plain air or solvent controls. However, in a petri dish arena assay, both sexes were arrested by lemon leaf odors. Coupled gas chromatography-mass spectrometry (GC/MS) analysis revealed quantitative differences in the odors of flushing and mature leaves, dominated by terpenes. Twenty-six terpenes were identified and quantified. In Petri dish arena assays, synthetic blends of the most abundant terpenes mimicking lemon flushing leaf odors elicited varying behavioral responses from both sexes of T. erytreae. A nine-component blend and a blend of the three most abundant terpenes; limonene, sabinene and ß-ocimene arrested both sexes of T. erytreae. In contrast, a six-component blend lacking in these three components elicited an avoidance response in both sexes. Furthermore, both sexes of T. erytreae preferred the three-component synthetic blend to lemon crude volatile extract. These results suggest that lemon terpenes might be used in the management of T. erytreae.


Subject(s)
Citrus/chemistry , Hemiptera/physiology , Plant Extracts/chemistry , Terpenes/chemistry , Volatile Organic Compounds/chemistry , Animals , Behavior, Animal , Citrus/parasitology , Female , Gas Chromatography-Mass Spectrometry/methods , Host Specificity , Host-Parasite Interactions , Insect Vectors , Male , Odorants , Plant Diseases/microbiology , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Terpenes/metabolism , Volatile Organic Compounds/metabolism
14.
PLoS Genet ; 12(6): e1006097, 2016 06.
Article in English | MEDLINE | ID: mdl-27280405

ABSTRACT

In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.


Subject(s)
Bees/genetics , Sexual Behavior, Animal , Social Behavior , Africa , Animals , Chromosome Mapping , Female , Genetics, Population , Genome , Genotype , Geography , Homozygote , Male , Microsatellite Repeats , Phenotype , Polymorphism, Single Nucleotide , Reproduction/genetics , Selection, Genetic
15.
J Exp Biol ; 221(Pt 13)2018 07 10.
Article in English | MEDLINE | ID: mdl-29776997

ABSTRACT

One of the responses that honey bee workers can make in the event of queen loss is to develop into false queens. False queens are workers that exhibit both behavioural and physiological traits similar to those of a true queen. However, the presence of more than one false queen in a colony distorts the established hierarchies. As transformation into a false queen occurs after emergence as an adult, we tested the effect of worker mobile pheromone carriers (PCs) treated with exogenously supplied pheromones on their nestmates. The PCs carried either synthetic mandibular gland pheromones or pheromones extracted from Apis melliferacapensis parasitic workers. Only the PCs attracted retinues of workers, increased pheromone production and activated their ovaries, becoming false queens. Pheromones from A. m.capensis workers were more effective than extracts of commercially available synthetic queen pheromones in eliciting these effects. Using this simple mobile pheromone delivery system, we have shown that carrying amounts of exogenous pheromone can induce pheromone production in the carrier, resulting in the production of false queens within experimental groups. Possible implications of using this technique to modify and regulate worker reproduction in colonies are discussed.


Subject(s)
Bees/physiology , Pheromones/metabolism , Animals , Phenotype , Pheromones/administration & dosage , Population Dynamics , Reproduction
16.
Naturwissenschaften ; 105(3-4): 22, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29557991

ABSTRACT

Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods-a principal component analysis and a time course analysis-led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.


Subject(s)
Bees/physiology , Transcriptome/genetics , Animals , Bees/genetics , Female , Hierarchy, Social , Reproduction/genetics
17.
Parasitology ; 145(12): 1633-1639, 2018 10.
Article in English | MEDLINE | ID: mdl-29661259

ABSTRACT

Although Varroa destructor is the most serious ecto-parasite to the honeybee, Apis mellifera L., some honeybee populations such as Apis mellifera scutellata in Kenya can survive mite infestations without treatment. Previously, we reported that grooming behaviour could be a potential tolerant mechanism expressed by this honeybee subspecies towards mite infestation. However, both hygienic and grooming behaviours could not explain the lower mite-infestation levels recorded in these colonies. Here, we investigated the involvement of other potential resistant mechanisms including suppression of mite reproduction in worker brood cells of A. m. scutellata to explain the low mite numbers in their colonies. High infertility rates (26-27%) and percentages of unmated female offspring (39-58%) as well as low fecundity (1.7-2.2, average offspring produced) were identified as key parameters that seem to interact with one another during different seasons to suppress mite reproduction in A. m. scutellata colonies. We also identified offspring mortality in both sexes and absence of male offspring as key factors accounting for the low numbers of mated daughter mites produced in A. m. scutellata colonies. These results suggest that reduced mite reproductive success could explain the slow mite population growth in A. m. scutellata colonies.


Subject(s)
Bees/parasitology , Mite Infestations/veterinary , Varroidae/physiology , Animals , Bees/physiology , Behavior, Animal , Female , Fertility , Male , Mite Infestations/parasitology , Reproduction , Seasons , Varroidae/growth & development
18.
J Chem Ecol ; 43(5): 443-450, 2017 May.
Article in English | MEDLINE | ID: mdl-28455796

ABSTRACT

The influence of pheromones on insect physiology and behavior has been thoroughly reported for numerous aspects, such as attraction, gland development, aggregation, mate and kin recognition. Brood pheromone (BP) is released by honey bee larvae to indicate their protein requirements to the colony. Although BP is known to modulate pollen and protein consumption, which in turn can affect physiological and morphological parameters, such as hypopharyngeal gland (HPG) development and ovarian activation, few studies have focused on the effect of BP on nutritional balance. In this study, we exposed newly emerged worker bees for 14 d and found that BP exposure increased protein intake during the first few days, with a peak in consumption at day four following exposure. BP exposure decreased survival of caged honey bees, but did not affect either the size of the HPG acini or ovarian activation stage. The uncoupling of the BP releaser effect, facilitated by working under controlled conditions, and the presence of larvae as stimulating cues are discussed.


Subject(s)
Bees/drug effects , Bees/metabolism , Feeding Behavior/drug effects , Pheromones/pharmacology , Animals , Bees/growth & development , Chromatography, Gas , Larva/drug effects , Larva/physiology , Pheromones/analysis
19.
Parasitology ; 143(3): 374-87, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26690678

ABSTRACT

Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation.


Subject(s)
Bees/parasitology , Host-Parasite Interactions , Varroidae/physiology , Animals , Breeding , Reproduction/physiology , Selection, Genetic
20.
J Econ Entomol ; 109(2): 510-4, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26921226

ABSTRACT

China is the largest producer and exporter of royal jelly (RJ) in the world, supplying >90% of the global market. The high production of RJ in China is principally owing to the high RJ-producing lineage of honeybees (Apis mellifera ligustica Spinola, 1806) established by beekeepers in the 1980s. We describe the development of high royal jelly-producing honeybees and the management of this lineage today. Previous research and recent advances in the genetic characterization of this lineage, and the molecular markers and mechanisms associated with high RJ production are summarized. The gaps in our knowledge and prospects for future research are also highlighted.


Subject(s)
Bees/genetics , Fatty Acids/biosynthesis , Animals , Breeding , China
SELECTION OF CITATIONS
SEARCH DETAIL