Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Appl Environ Microbiol ; 82(14): 4350-4362, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27208099

ABSTRACT

UNLABELLED: PatzT is an internal promoter of the atzRSTUVW operon that directs the synthesis of AtzT, AtzU, AtzV, and AtzW, components of an ABC-type cyanuric acid transport system. PatzT is σ(N) dependent, activated by the general nitrogen control regulator NtrC with the assistance of protein integration host factor (IHF), and repressed by the LysR-type transcriptional regulator (LTTR) AtzR. We have used a variety of in vivo and in vitro gene expression and protein-DNA interaction assays to assess the mechanisms underlying AtzR-dependent repression of PatzT Here, we show that repression only occurs when AtzR and NtrC interact simultaneously with the PatzT promoter region, indicating that AtzR acts as an antiactivator to antagonize activation by NtrC. Furthermore, repression requires precise rotational orientation of the AtzR and NtrC binding sites, strongly suggesting protein-protein interaction between the two proteins on the promoter region. Further exploration of the antiactivation mechanism showed that although AtzR-dependent repression occurs prior to open complex formation, AtzR does not alter the oligomerization state of NtrC or inhibit NtrC ATPase activity when bound to the PatzT promoter region. Taken together, these results strongly suggest that PatzT-bound AtzR interacts with NtrC to prevent the coupling of NtrC-mediated ATP hydrolysis with the remodeling of the interactions between E-σ(N) and PatzT that lead to open complex formation. IMPORTANCE: Here, we describe a unique mechanism by which the regulatory protein AtzR prevents the activation of the σ(N)-dependent promoter PatzT Promoters of this family are always positively regulated, but there are a few examples of overlapping negative regulation. The mechanism described here is highly unconventional and involves an interaction between the repressor and activator proteins to prevent the action of the repressor protein on the RNA polymerase-promoter complex.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Pseudomonas/genetics , Pseudomonas/metabolism , Repressor Proteins/metabolism , Sigma Factor/metabolism , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , DNA, Bacterial/metabolism , Operon , Protein Binding , Pseudomonas/enzymology
2.
J Bacteriol ; 194(23): 6560-73, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23042989

ABSTRACT

The atzS-atzT-atzU-atzV-atzW gene cluster of the Pseudomonas sp. strain ADP atrazine-degradative plasmid pADP-1, which carries genes for an outer membrane protein and the components of a putative ABC-type solute transporter, is located downstream from atzR, which encodes the LysR-type transcriptional regulator of the cyanuric acid-degradative operon atzDEF. Here we describe the transcriptional organization of these genes. Our results show that all six genes are cotranscribed from the PatzR promoter to form the atzRSTUVW operon. A second, stronger promoter, PatzT, is found within atzS and directs transcription of the four distal genes. PatzT is σ(N) dependent, activated by NtrC in response to nitrogen limitation with the aid of IHF, and repressed by AtzR. A combination of in vivo mutational analysis and primer extension allowed us to locate the PatzT promoter and map the transcriptional start site. Similarly, we used deletion and point mutation analyses, along with in vivo expression studies and in vitro binding assays, to locate the NtrC, IHF, and AtzR binding sites and address their functionality. Our results suggest a regulatory model in which NtrC activates PatzT transcription via DNA looping, while AtzR acts as an antiactivator that diminishes expression by interfering with the activation process.


Subject(s)
Gene Expression Regulation, Bacterial , Membrane Transport Proteins/genetics , Operon , Plasmids , Pseudomonas/genetics , Transcription Factors/genetics , Transcription, Genetic , DNA Mutational Analysis , Multigene Family , Point Mutation , Promoter Regions, Genetic , Sequence Deletion
3.
Nat Commun ; 13(1): 6515, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316320

ABSTRACT

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but lacking canonical coding sequences. Apparently unable to produce peptides, lncRNA function seems to rely only on RNA expression, sequence and structure. Here, we exhaustively detect in-vivo translation of small open reading frames (small ORFs) within lncRNAs using Ribosomal profiling during Drosophila melanogaster embryogenesis. We show that around 30% of lncRNAs contain small ORFs engaged by ribosomes, leading to regulated translation of 100 to 300 micropeptides. We identify lncRNA features that favour translation, such as cistronicity, Kozak sequences, and conservation. For the latter, we develop a bioinformatics pipeline to detect small ORF homologues, and reveal evidence of natural selection favouring the conservation of micropeptide sequence and function across evolution. Our results expand the repertoire of lncRNA biochemical functions, and suggest that lncRNAs give rise to novel coding genes throughout evolution. Since most lncRNAs contain small ORFs with as yet unknown translation potential, we propose to rename them "long non-canonical RNAs".


Subject(s)
RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Drosophila melanogaster/genetics , Open Reading Frames/genetics , Ribosomes/genetics , Ribosomes/metabolism , Selection, Genetic
4.
Mol Microbiol ; 76(2): 331-47, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20199600

ABSTRACT

AtzR is a LysR-type regulator responsible for activation of the cyanuric acid utilization operon atzDEF. AtzR binds the PatzDEF promoter region at a strong recognition element, designated the repressor binding site, and a weaker binding determinant, the activator binding site (ABS). AtzR activates transcription in response to two dissimilar signals, nitrogen limitation and cyanuric acid. In the present work we analyse the structure and function of the cis-acting elements involved in AtzR activation of atzDEF. Hydroxyl radical footprinting assays revealed that the ABS is composed of three functional subsites spaced at one helix-turn intervals. Two modes of interaction with the ABS are detected in vitro: AtzR binds at the ABS-2 and ABS-3 subsites in the absence of inducer, and relocates to interact with the ABS-1 and ABS-2 subsites in the presence of cyanuric acid. In vivo mutational analysis indicates that ABS-1 and ABS-2 are required for full PatzDEF activation in all conditions. In contrast, ABS-3 acts as a 'subunit trap' that hinders productive AtzR interactions with ABS-1 and ABS-2. Our results strongly suggest an activation model in which cyanuric acid and nitrogen limitation cooperate to reposition AtzR from an inactive, ABS-3 bound configuration to an active, ABS-1- and ABS-2-bound configuration.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Pseudomonas putida/physiology , Trans-Activators/metabolism , Base Sequence , Binding Sites , DNA Footprinting , DNA Mutational Analysis , Electrophoretic Mobility Shift Assay , Genes, Reporter , Molecular Sequence Data , Nitrogen/metabolism , Operon , Promoter Regions, Genetic , Protein Binding , Pseudomonas putida/genetics , Triazines/metabolism , beta-Galactosidase/metabolism
5.
Nat Commun ; 12(1): 5660, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580289

ABSTRACT

Small Open Reading Frames (smORFs) coding for peptides of less than 100 amino-acids are an enigmatic and pervasive gene class, found in the tens of thousands in metazoan genomes. Here we reveal a short 80 amino-acid peptide (Pegasus) which enhances Wingless/Wnt1 protein short-range diffusion and signalling. During Drosophila wing development, Wingless has sequential functions, including late induction of proneural gene expression and wing margin development. Pegasus mutants produce wing margin defects and proneural expression loss similar to those of Wingless. Pegasus is secreted, and co-localizes and co-immunoprecipitates with Wingless, suggesting their physical interaction. Finally, measurements of fixed and in-vivo Wingless gradients support that Pegasus increases Wingless diffusion in order to enhance its signalling. Our results unveil a new element in Wingless signalling and clarify the patterning role of Wingless diffusion, while corroborating the link between small open reading frame peptides, and regulation of known proteins with membrane-related functions.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/physiology , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/metabolism , Peptides/metabolism , Wings, Animal/growth & development , Wnt1 Protein/metabolism , Animals , Animals, Genetically Modified , Intravital Microscopy , Peptides/genetics , Time-Lapse Imaging
6.
PLoS One ; 11(9): e0163142, 2016.
Article in English | MEDLINE | ID: mdl-27636892

ABSTRACT

Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/analogs & derivatives , Pseudomonas aeruginosa/metabolism , Sigma Factor/metabolism , Trans-Activators/metabolism , Cyclic GMP/metabolism , Promoter Regions, Genetic , Pseudomonas aeruginosa/growth & development
7.
FEMS Microbiol Lett ; 310(1): 1-8, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20497226

ABSTRACT

The Gram-negative bacterium Pseudomonas sp. strain ADP is the best-characterized organism able to mineralize the s-triazine herbicide atrazine. This organism has been the subject of extensive biochemical and genetic characterization that has led to its use in bioremediation programs aimed at the decontamination of atrazine-polluted sites. Here, we focus on the recent advances in the understanding of the mechanisms of genetic regulation operating on the atrazine-degradative genes. The Pseudomonas sp. strain ADP atrazine-degradation pathway is encoded by two sets of genes: the constitutively expressed atzA, atzB and atzC, and the strongly regulated atzDEF operon. A complex cascade-like circuit is responsible for the integrated regulation of atzDEF expression in response to nitrogen availability and cyanuric acid. Mechanistic studies have revealed several unusual traits, such as the upstream activating sequence-independent regulation and repression by competition with sigma(54)-RNA polymerase for DNA binding occurring at the sigma(54)-dependent PatzR promoter, and the dual mechanism of transcriptional regulation of the PatzDEF promoter by the LysR-type regulator AtzR in response to two dissimilar signals. These findings have provided new insights into the regulation of the atrazine-biodegradative pathway that are also relevant to widespread bacterial regulatory phenomena, such as global nitrogen control and transcriptional activation by LysR-type transcriptional regulators.


Subject(s)
Atrazine/metabolism , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways , Pseudomonas/genetics , Pseudomonas/metabolism , Operon , Promoter Regions, Genetic , Repressor Proteins/metabolism , Soil Pollutants/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL