ABSTRACT
Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the in vivo architecture and intercellular crosstalk. We developed specific methodologies to assess the translocation of GO and FLG in a label-free fashion and a platform applicable to any nanomaterial. Overall, our results show good biocompatibility of the two GRMs, which did not impact the integrity and functionality of the barrier. Sufficiently dispersed subpopulations of GO and FLG were actively uptaken by endothelial cells; however, the translocation was identified as a rare event.
Subject(s)
Blood-Brain Barrier , Graphite , Humans , Animals , Mice , Endothelial Cells , BrainABSTRACT
End-ischemic viability testing by normothermic machine perfusion (NMP) represents an effective strategy to recover liver grafts having initially been discarded for liver transplantation (LT). However, its results in the setting of significant (≥30%) macrovesicular steatosis (MaS) have not been specifically assessed. Prospectively maintained databases at two high-volume LT centers in Northern Italy were searched to identify cases of end-ischemic NMP performed to test the viability of livers with MaS ≥ 30% in the period from January 2019 to January 2022. A total of 14 cases were retrieved, representing 57.9% of NMP and 5.7% of all machine perfusion procedures. Of those patients, 10 (71%) received transplants. Two patients developed primary nonfunction (PNF) and required urgent re-LT, and both were characterized by incomplete or suboptimal lactate clearance during NMP. PNF cases were also characterized by higher perfusate transaminases, lower hepatic artery and portal vein flows at 2 h, and a lack of glucose metabolism in one case. The remaining eight patients showed good liver function (Liver Graft Assessment Following Transplantation risk score, -1.9 [risk, 13.6%]; Early Allograft Failure Simplified Estimation score, -3.7 [risk, 2.6%]) and had a favorable postoperative course. Overall, NMP allowed successful transplantation of 57% of livers with moderate-to-severe MaS. Our findings suggest that prolonged observation (≥6 h) might be required for steatotic livers and that stable lactate clearance is a fundamental prerequisite for their use.
Subject(s)
Fatty Liver , Liver Transplantation , Humans , Liver Transplantation/adverse effects , Liver Transplantation/methods , Organ Preservation/methods , Liver/blood supply , Fatty Liver/surgery , Fatty Liver/metabolism , Perfusion/methods , Lactates/metabolismABSTRACT
ABSTRACT: End-ischemic viability testing by normothermic machine perfusion (NMP) represents an effective strategy to recover liver grafts having initially been discarded for liver transplantation (LT). However, its results in the setting of significant (≥30%) macrovesicular steatosis (MaS) have not been specifically assessed. Prospectively maintained databases at two high-volume LT centers in Northern Italy were searched to identify cases of end-ischemic NMP performed to test the viability of livers with MaS ≥ 30% in the period from January 2019 to January 2022. A total of 14 cases were retrieved, representing 57.9% of NMP and 5.7% of all machine perfusion procedures. Of those patients, 10 (71%) received transplants. Two patients developed primary nonfunction (PNF) and required urgent re-LT, and both were characterized by incomplete or suboptimal lactate clearance during NMP. PNF cases were also characterized by higher perfusate transaminases, lower hepatic artery and portal vein flows at 2 h, and a lack of glucose metabolism in one case. The remaining eight patients showed good liver function (Liver Graft Assessment Following Transplantation risk score, -1.9 [risk, 13.6%]; Early Allograft Failure Simplified Estimation score, -3.7 [risk, 2.6%]) and had a favorable postoperative course. Overall, NMP allowed successful transplantation of 57% of livers with moderate-to-severe MaS. Our findings suggest that prolonged observation (≥6 h) might be required for steatotic livers and that stable lactate clearance is a fundamental prerequisite for their use.
ABSTRACT
BACKGROUND AND STUDY AIM: The development of a new cholangioscope, the SpyGlass™ Discover (Boston Scientific), has allowed the laparoscopic transcystic common bile duct exploration and stone clearance. The possibility of simultaneous treatment of choledocholithiasis during early laparoscopic cholecystectomy offers the opportunity to enormously reduce the time between acute cholecystitis diagnosis and the execution of cholecystectomy with better outcomes for patients. Furthermore, an altered anatomy of the gastrointestinal tract is not an obstacle to this technique. The aim of the study was to determine whether this new procedure is feasible, safe, and effective. PATIENTS AND METHODS: The investigation employs a retrospective case series study including all consecutive patients with a diagnosis of common bile duct stones undergoing cholecystectomy and intraoperative laparoscopic common bile duct clearance using SpyGlass™ Discover at IRCCS Policlinico San Matteo in Pavia (Italy). Eighteen patients were included from May 2022 to May 2023. RESULTS: A complete clearance of the common bile duct was obtained in 88.9% of patients. The mean postoperative length of stay was 3 days. No major complications occurred. After a median follow-up of 8 months, no recurrence of biliary events or readmissions occurred. CONCLUSION: This procedure has proven to be feasible, safe, and effective.
Subject(s)
Gallstones , Laparoscopy , Humans , Retrospective Studies , Cholecystectomy , Gallstones/surgery , Common Bile Duct/surgeryABSTRACT
Graphene is regarded as a viable bio-interface for neuroscience due to its biocompatibility and electrical conductivity, which would contribute to efficient neuronal network signaling. Here, monolayer graphene grown via chemical vapor deposition is treated with remote hydrogen plasma to demonstrate that hydrogenated graphene (HGr) fosters improved cell-to-cell communication with respect to pristine graphene in primary cortical neurons. When transferred to polyethylene terephthalate, HGr exhibits higher wettability than graphene (water contact angle of 83.7° vs 40.7°), while preserving electrical conductivity (≈3 kΩ â¡-1 ). A rich and mature network is observed to develop onto HGr. The intrinsic excitability and firing properties of neurons plated onto HGr appears unaltered, while the basic passive and active membrane properties are fully preserved. The formation of excitatory synaptic connections increases in HGr with respect to pristine graphene, leading to a doubled miniature excitatory postsynaptic current frequency. This study supports the use of hydrogenation for tailoring graphene into an improved neuronal interface, indicating that wettability, more than electrical conductivity, is the key parameter to be controlled. The use of HGr can bring about a deeper understanding of neuronal behavior on artificial bio-interfaces and provide new insight for graphene-based biomedical applications.