Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Genet ; 15(4): e1008079, 2019 04.
Article in English | MEDLINE | ID: mdl-30969963

ABSTRACT

Characterizing the fitness landscape, a representation of fitness for a large set of genotypes, is key to understanding how genetic information is interpreted to create functional organisms. Here we determined the evolutionarily-relevant segment of the fitness landscape of His3, a gene coding for an enzyme in the histidine synthesis pathway, focusing on combinations of amino acid states found at orthologous sites of extant species. Just 15% of amino acids found in yeast His3 orthologues were always neutral while the impact on fitness of the remaining 85% depended on the genetic background. Furthermore, at 67% of sites, amino acid replacements were under sign epistasis, having both strongly positive and negative effect in different genetic backgrounds. 46% of sites were under reciprocal sign epistasis. The fitness impact of amino acid replacements was influenced by only a few genetic backgrounds but involved interaction of multiple sites, shaping a rugged fitness landscape in which many of the shortest paths between highly fit genotypes are inaccessible.


Subject(s)
Evolution, Molecular , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genetic Fitness , Yeasts/genetics , Yeasts/metabolism , Amino Acid Sequence , Amino Acid Substitution , Amino Acids/genetics , Amino Acids/metabolism , Epistasis, Genetic , Fungal Proteins/chemistry , Genes, Fungal , Genotype , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Models, Genetic , Models, Molecular , Phylogeny , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Genome Biol ; 23(1): 93, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414014

ABSTRACT

BACKGROUND: Biases of DNA repair can shape the nucleotide landscape of genomes at evolutionary timescales. The molecular mechanisms of those biases are still poorly understood because it is difficult to isolate the contributions of DNA repair from those of DNA damage. RESULTS: Here, we develop a genome-wide assay whereby the same DNA lesion is repaired in different genomic contexts. We insert thousands of barcoded transposons carrying a reporter of DNA mismatch repair in the genome of mouse embryonic stem cells. Upon inducing a double-strand break between tandem repeats, a mismatch is generated if the break is repaired through single-strand annealing. The resolution of the mismatch showed a 60-80% bias in favor of the strand with the longest 3' flap. The location of the lesion in the genome and the type of mismatch had little influence on the bias. Instead, we observe a complete reversal of the bias when the longest 3' flap is moved to the opposite strand by changing the position of the double-strand break in the reporter. CONCLUSIONS: These results suggest that the processing of the double-strand break has a major influence on the repair of mismatches during a single-strand annealing.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Animals , DNA , DNA Damage , Mice
SELECTION OF CITATIONS
SEARCH DETAIL