Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Publication year range
1.
Nature ; 592(7853): 277-282, 2021 04.
Article in English | MEDLINE | ID: mdl-33545711

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.


Subject(s)
COVID-19 Drug Treatment , COVID-19/therapy , COVID-19/virology , Evolution, Molecular , Mutagenesis/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Aged , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Chronic Disease , Genome, Viral/drug effects , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Humans , Immune Evasion/drug effects , Immune Evasion/genetics , Immune Evasion/immunology , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunization, Passive , Immunosuppression Therapy , Male , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutation , Phylogeny , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Viral Load/drug effects , Virus Shedding , COVID-19 Serotherapy
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33879570

ABSTRACT

Epistasis and cooperativity of folding both result from networks of energetic interactions in proteins. Epistasis results from energetic interactions among mutants, whereas cooperativity results from energetic interactions during folding that reduce the presence of intermediate states. The two concepts seem intuitively related, but it is unknown how they are related, particularly in terms of selection. To investigate their relationship, we simulated protein evolution under selection for cooperativity and separately under selection for epistasis. Strong selection for cooperativity created strong epistasis between contacts in the native structure but weakened epistasis between nonnative contacts. In contrast, selection for epistasis increased epistasis in both native and nonnative contacts and reduced cooperativity. Because epistasis can be used to predict protein structure only if it preferentially occurs in native contacts, this result indicates that selection for cooperativity may be key for predicting structure using epistasis. To evaluate this inference, we simulated the evolution of guanine nucleotide-binding protein (GB1) with and without cooperativity. With cooperativity, strong epistatic interactions clearly map out the native GB1 structure, while allowing the presence of intermediate states (low cooperativity) obscured the structure. This indicates that using epistasis measurements to reconstruct protein structure may be inappropriate for proteins with stable intermediates.


Subject(s)
Epistasis, Genetic/genetics , Forecasting/methods , Protein Folding , Epistasis, Genetic/physiology , Evolution, Molecular , Kinetics , Models, Molecular , Protein Conformation , Proteins/chemistry , Thermodynamics
4.
Mol Biol Evol ; 37(9): 2706-2710, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32658964

ABSTRACT

Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. However, we must uphold rigorous standards of inference and interpretation on this topic because of the ramifications of being wrong. Here, we dispute the conclusions of Xia (2020. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense. Mol Biol Evol. doi:10.1093/molbev/masa095) that dogs are a likely intermediate host of a SARS-CoV-2 ancestor. We highlight major flaws in Xia's inference process and his analysis of CpG deficiencies, and conclude that there is no direct evidence for the role of dogs as intermediate hosts. Bats and pangolins currently have the greatest support as ancestral hosts of SARS-CoV-2, with the strong caveat that sampling of wildlife species for coronaviruses has been limited.


Subject(s)
Alphacoronavirus/genetics , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Genome, Viral , Pandemics , Pneumonia, Viral/epidemiology , Reassortant Viruses/genetics , Alphacoronavirus/classification , Alphacoronavirus/pathogenicity , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Biological Evolution , COVID-19 , Chiroptera/virology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Coronavirus Infections/virology , CpG Islands , Dogs , Eutheria/virology , Humans , Immune Evasion/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Protein Binding , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Reassortant Viruses/classification , Reassortant Viruses/pathogenicity , SARS-CoV-2 , Virus Replication
5.
Nature ; 477(7366): 587-91, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21881562

ABSTRACT

The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.


Subject(s)
Birds/genetics , Evolution, Molecular , Genome/genetics , Lizards/genetics , Mammals/genetics , Animals , Chickens/genetics , GC Rich Sequence/genetics , Genomics , Humans , Molecular Sequence Data , Phylogeny , Synteny/genetics , X Chromosome/genetics
6.
PLoS Genet ; 10(8): e1004482, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25121584

ABSTRACT

Most common methods for inferring transposable element (TE) evolutionary relationships are based on dividing TEs into subfamilies using shared diagnostic nucleotides. Although originally justified based on the "master gene" model of TE evolution, computational and experimental work indicates that many of the subfamilies generated by these methods contain multiple source elements. This implies that subfamily-based methods give an incomplete picture of TE relationships. Studies on selection, functional exaptation, and predictions of horizontal transfer may all be affected. Here, we develop a Bayesian method for inferring TE ancestry that gives the probability that each sequence was replicative, its frequency of replication, and the probability that each extant TE sequence came from each possible ancestral sequence. Applying our method to 986 members of the newly-discovered LAVA family of TEs, we show that there were far more source elements in the history of LAVA expansion than subfamilies identified using the CoSeg subfamily-classification program. We also identify multiple replicative elements in the AluSc subfamily in humans. Our results strongly indicate that a reassessment of subfamily structures is necessary to obtain accurate estimates of mutation processes, phylogenetic relationships and historical times of activity.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Phylogeny , Bayes Theorem , Gene Transfer, Horizontal/genetics , Humans , Mutation
8.
Mol Biol Evol ; 32(6): 1373-81, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25737491

ABSTRACT

Convergence is a central concept in evolutionary studies because it provides strong evidence for adaptation. It also provides information about the nature of the fitness landscape and the repeatability of evolution, and can mislead phylogenetic inference. To understand the role of adaptive convergence, we need to understand the patterns of nonadaptive convergence. Here, we consider the relationship between nonadaptive convergence and divergence in mitochondrial and model proteins. Surprisingly, nonadaptive convergence is much more common than expected in closely related organisms, falling off as organisms diverge. The extent of the convergent drop-off in mitochondrial proteins is well predicted by epistatic or coevolutionary effects in our "evolutionary Stokes shift" models and poorly predicted by conventional evolutionary models. Convergence probabilities decrease dramatically if the ancestral amino acids of branches being compared have diverged, but also drop slowly over evolutionary time even if the ancestral amino acids have not substituted. Convergence probabilities drop-off rapidly for quickly evolving sites, but much more slowly for slowly evolving sites. Furthermore, once sites have diverged their convergence probabilities are extremely low and indistinguishable from convergence levels at randomized sites. These results indicate that we cannot assume that excessive convergence early on is necessarily adaptive. This new understanding should help us to better discriminate adaptive from nonadaptive convergence and develop more relevant evolutionary models with improved validity for phylogenetic inference.


Subject(s)
Adaptation, Physiological/genetics , Amino Acids/genetics , Evolution, Molecular , Mitochondrial Proteins/genetics , Animals , Genome, Mitochondrial , Models, Genetic , Phylogeny , Vertebrates/genetics
9.
Biopolymers ; 106(2): 144-159, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26799790

ABSTRACT

We have utilized a de novo designed two-stranded α-helical coiled-coil template to display conserved α-helical epitopes from the stem region of hemagglutinin (HA) glycoproteins of influenza A. The immunogens have all the surface-exposed residues of the native α-helix in the native HA protein of interest displayed on the surface of the two-stranded α-helical coiled-coil template. This template when used as an immunogen elicits polyclonal antibodies which bind to the α-helix in the native protein. We investigated the highly conserved sequence region 421-476 of HA by inserting 21 or 28 residue sequences from this region into our template. The cross-reactivity of the resulting rabbit polyclonal antibodies prepared to these immunogens was determined using a series of HA proteins from H1N1, H2N2, H3N2, H5N1, H7N7, and H7N9 virus strains which are representative of Group 1 and Group 2 virus subtypes of influenza A. Antibodies from region 449-476 were Group 1 specific. Antibodies to region 421-448 showed the greatest degree of cross-reactivity to Group 1 and Group 2 and suggested that this region has a great potential as a "universal" synthetic peptide vaccine for influenza A. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 144-159, 2016.

10.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297900

ABSTRACT

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Subject(s)
Adaptation, Biological/physiology , Elapid Venoms , Elapidae , Evolution, Molecular , Genome/physiology , Transcriptome/physiology , Animals , Elapid Venoms/genetics , Elapid Venoms/metabolism , Elapidae/genetics , Elapidae/metabolism , Exocrine Glands/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
11.
Proc Natl Acad Sci U S A ; 110(51): 20645-50, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297902

ABSTRACT

Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.


Subject(s)
Adaptation, Physiological/physiology , Boidae , Evolution, Molecular , Gene Expression Regulation/physiology , Genome/physiology , Transcription, Genetic/physiology , Animals , Boidae/genetics , Boidae/metabolism , Cell Cycle/physiology , Humans , Organ Specificity/physiology
12.
Physiol Genomics ; 47(5): 147-57, 2015 May.
Article in English | MEDLINE | ID: mdl-25670730

ABSTRACT

Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans.


Subject(s)
Boidae/genetics , Boidae/physiology , Feeding Behavior/physiology , Gene Expression Regulation , Intestinal Mucosa/metabolism , Animals , Apoptosis/genetics , Cell Cycle/genetics , Digestion/genetics , Gene Expression Profiling , Intestine, Small/metabolism , Time Factors , Wnt Signaling Pathway/genetics
14.
Proc Natl Acad Sci U S A ; 109(21): E1352-9, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22547823

ABSTRACT

The process of amino acid replacement in proteins is context-dependent, with substitution rates influenced by local structure, functional role, and amino acids at other locations. Predicting how these differences affect replacement processes is difficult. To make such inference easier, it is often assumed that the acceptabilities of different amino acids at a position are constant. However, evolutionary interactions among residue positions will tend to invalidate this assumption. Here, we use simulations of purple acid phosphatase evolution to show that amino acid propensities at a position undergo predictable change after an amino acid replacement at that position. After a replacement, the new amino acid and similar amino acids tend to become gradually more acceptable over time at that position. In other words, proteins tend to equilibrate to the presence of an amino acid at a position through replacements at other positions. Such a shift is reminiscent of the spectroscopy effect known as the Stokes shift, where molecules receiving a quantum of energy and moving to a higher electronic state will adjust to the new state and emit a smaller quantum of energy whenever they shift back down to the original ground state. Predictions of changes in stability in real proteins show that mutation reversals become less favorable over time, and thus, broadly support our results. The observation of an evolutionary Stokes shift has profound implications for the study of protein evolution and the modeling of evolutionary processes.


Subject(s)
Acid Phosphatase/genetics , Amino Acid Substitution/genetics , Amino Acids/genetics , Evolution, Molecular , Glycoproteins/genetics , Models, Genetic , Proteins/genetics , Amino Acids/chemistry , Genomic Instability/genetics , Molecular Dynamics Simulation , Phylogeny , Plant Proteins/genetics , Protein Folding , Proteins/chemistry , Spectrometry, Fluorescence/methods , Thermodynamics
15.
PLoS Genet ; 7(12): e1002384, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22144907

ABSTRACT

Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo "clouds"). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%-69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed "element-specific" P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed.


Subject(s)
Alu Elements/genetics , Computational Biology/methods , DNA Transposable Elements/genetics , Genome, Human/genetics , Repetitive Sequences, Nucleic Acid/genetics , Algorithms , Consensus Sequence/genetics , Humans , Long Interspersed Nucleotide Elements/genetics , Molecular Sequence Annotation , Software
16.
Bioinformatics ; 28(22): 2989-90, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22976081

ABSTRACT

SUMMARY: Phylogenetics, likelihood, evolution and complexity (PLEX) is a flexible and fast Bayesian Markov chain Monte Carlo software program for large-scale analysis of nucleotide and amino acid data using complex evolutionary models in a phylogenetic framework. The program gains large speed improvements over standard approaches by implementing 'partial sampling of substitution histories', a data augmentation approach that can reduce data analysis times from months to minutes on large comparative datasets. A variety of nucleotide and amino acid substitution models are currently implemented, including non-reversible and site-heterogeneous mixture models. Due to efficient algorithms that scale well with data size and model complexity, PLEX can be used to make inferences from hundreds to thousands of taxa in only minutes on a desktop computer. It also performs probabilistic ancestral sequence reconstruction. Future versions will support detection of co-evolutionary interactions between sites, probabilistic tests of convergent evolution and rigorous testing of evolutionary hypotheses in a Bayesian framework. AVAILABILITY AND IMPLEMENTATION: PLEX v1.0 is licensed under GPL. Source code and documentation will be available for download at www.evolutionarygenomics.com/ProgramsData/PLEX. PLEX is implemented in C++ and supported on Linux, Mac OS X and other platforms supporting standard C++ compilers. Example data, control files, documentation and accessory Perl scripts are available from the website. CONTACT: David.Pollock@UCDenver.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Biological Evolution , Phylogeny , Software , Animals , Bayes Theorem , Markov Chains , Monte Carlo Method , Probability
17.
Nature ; 447(7141): 167-77, 2007 May 10.
Article in English | MEDLINE | ID: mdl-17495919

ABSTRACT

We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.


Subject(s)
Evolution, Molecular , Genome/genetics , Genomics , Opossums/genetics , Animals , Base Composition , Conserved Sequence/genetics , DNA Transposable Elements/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Protein Biosynthesis , Synteny/genetics , X Chromosome Inactivation/genetics
18.
Nat Ecol Evol ; 7(1): 155-170, 2023 01.
Article in English | MEDLINE | ID: mdl-36604553

ABSTRACT

On macroevolutionary timescales, extensive mutations and phylogenetic uncertainty mask the signals of genotype-phenotype associations underlying convergent evolution. To overcome this problem, we extended the widely used framework of non-synonymous to synonymous substitution rate ratios and developed the novel metric ωC, which measures the error-corrected convergence rate of protein evolution. While ωC distinguishes natural selection from genetic noise and phylogenetic errors in simulation and real examples, its accuracy allows an exploratory genome-wide search of adaptive molecular convergence without phenotypic hypothesis or candidate genes. Using gene expression data, we explored over 20 million branch combinations in vertebrate genes and identified the joint convergence of expression patterns and protein sequences with amino acid substitutions in functionally important sites, providing hypotheses on undiscovered phenotypes. We further extended our method with a heuristic algorithm to detect highly repetitive convergence among computationally non-trivial higher-order phylogenetic combinations. Our approach allows bidirectional searches for genotype-phenotype associations, even in lineages that diverged for hundreds of millions of years.


Subject(s)
Evolution, Molecular , Genome , Phylogeny , Genetic Association Studies , Phenotype
20.
Proc Natl Acad Sci U S A ; 106(22): 8986-91, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19416880

ABSTRACT

Documented cases of convergent molecular evolution due to selection are fairly unusual, and examples to date have involved only a few amino acid positions. However, because convergence mimics shared ancestry and is not accommodated by current phylogenetic methods, it can strongly mislead phylogenetic inference when it does occur. Here, we present a case of extensive convergent molecular evolution between snake and agamid lizard mitochondrial genomes that overcomes an otherwise strong phylogenetic signal. Evidence from morphology, nuclear genes, and most sites in the mitochondrial genome support one phylogenetic tree, but a subset of mostly amino acid-altering substitutions (primarily at the first and second codon positions) across multiple mitochondrial genes strongly supports a radically different phylogeny. The relevant sites generally evolved slowly but converged between ancient lineages of snakes and agamids. We estimate that approximately 44 of 113 predicted convergent changes distributed across all 13 mitochondrial protein-coding genes are expected to have arisen from nonneutral causes-a remarkably large number. Combined with strong previous evidence for adaptive evolution in snake mitochondrial proteins, it is likely that much of this convergent evolution was driven by adaptation. These results indicate that nonneutral convergent molecular evolution in mitochondria can occur at a scale and intensity far beyond what has been documented previously, and they highlight the vulnerability of standard phylogenetic methods to the presence of nonneutral convergent sequence evolution.


Subject(s)
Adaptation, Biological , Evolution, Molecular , Genome, Mitochondrial , Lizards/genetics , Snakes/genetics , Amino Acid Sequence/genetics , Animals , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL