Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Immunol ; 208(4): 929-940, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35091434

ABSTRACT

CD8+ T cell responses are the foundation of the recent clinical success of immunotherapy in oncologic indications. Although checkpoint inhibitors have enhanced the activity of existing CD8+ T cell responses, therapeutic approaches to generate Ag-specific CD8+ T cell responses have had limited success. Here, we demonstrate that cytosolic delivery of Ag through microfluidic squeezing enables MHC class I presentation to CD8+ T cells by diverse cell types. In murine dendritic cells (DCs), squeezed DCs were ∼1000-fold more potent at eliciting CD8+ T cell responses than DCs cross-presenting the same amount of protein Ag. The approach also enabled engineering of less conventional APCs, such as T cells, for effective priming of CD8+ T cells in vitro and in vivo. Mixtures of immune cells, such as murine splenocytes, also elicited CD8+ T cell responses in vivo when squeezed with Ag. We demonstrate that squeezing enables effective MHC class I presentation by human DCs, T cells, B cells, and PBMCs and that, in clinical scale formats, the system can squeeze up to 2 billion cells per minute. Using the human papillomavirus 16 (HPV16) murine model, TC-1, we demonstrate that squeezed B cells, T cells, and unfractionated splenocytes elicit antitumor immunity and correlate with an influx of HPV-specific CD8+ T cells such that >80% of CD8s in the tumor were HPV specific. Together, these findings demonstrate the potential of cytosolic Ag delivery to drive robust CD8+ T cell responses and illustrate the potential for an autologous cell-based vaccine with minimal turnaround time for patients.


Subject(s)
Antigen Presentation , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Microfluidics , Neoplasms/immunology , Adoptive Transfer , Animals , Antigen-Presenting Cells/metabolism , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Culture Techniques , Female , Humans , Immunization , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Knockout , Microfluidics/methods , Models, Biological , Neoplasms/metabolism , Neoplasms/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
J Clin Invest ; 132(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35775490

ABSTRACT

Cancers avoid immune surveillance through an array of mechanisms, including perturbation of HLA class I antigen presentation. Merkel cell carcinoma (MCC) is an aggressive, HLA-I-low, neuroendocrine carcinoma of the skin often caused by the Merkel cell polyomavirus (MCPyV). Through the characterization of 11 newly generated MCC patient-derived cell lines, we identified transcriptional suppression of several class I antigen presentation genes. To systematically identify regulators of HLA-I loss in MCC, we performed parallel, genome-scale, gain- and loss-of-function screens in a patient-derived MCPyV-positive cell line and identified MYCL and the non-canonical Polycomb repressive complex 1.1 (PRC1.1) as HLA-I repressors. We observed physical interaction of MYCL with the MCPyV small T viral antigen, supporting a mechanism of virally mediated HLA-I suppression. We further identify the PRC1.1 component USP7 as a pharmacologic target to restore HLA-I expression in MCC.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/pathology , Epigenesis, Genetic , Humans , Merkel cell polyomavirus/genetics , Merkel cell polyomavirus/metabolism , Polyomavirus Infections/genetics , Skin Neoplasms/pathology , Ubiquitin-Specific Peptidase 7/metabolism
3.
Cancer Cell ; 39(5): 632-648.e8, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33711273

ABSTRACT

The tumor immune microenvironment plays a critical role in cancer progression and response to immunotherapy in clear cell renal cell carcinoma (ccRCC), yet the composition and phenotypic states of immune cells in this tumor are incompletely characterized. We performed single-cell RNA and T cell receptor sequencing on 164,722 individual cells from tumor and adjacent non-tumor tissue in patients with ccRCC across disease stages: early, locally advanced, and advanced/metastatic. Terminally exhausted CD8+ T cells were enriched in metastatic disease and were restricted in T cell receptor diversity. Within the myeloid compartment, pro-inflammatory macrophages were decreased, and suppressive M2-like macrophages were increased in advanced disease. Terminally exhausted CD8+ T cells and M2-like macrophages co-occurred in advanced disease and expressed ligands and receptors that support T cell dysfunction and M2-like polarization. This immune dysfunction circuit is associated with a worse prognosis in external cohorts and identifies potentially targetable immune inhibitory pathways in ccRCC.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinoma, Renal Cell/genetics , Gene Expression Regulation, Neoplastic/genetics , Kidney Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/immunology , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunotherapy/methods , Kidney Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/metabolism , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL