Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Proc Natl Acad Sci U S A ; 119(18): e2112781119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35482925

ABSTRACT

Chronic inflammation underpins many human diseases. Morbidity and mortality associated with chronic inflammation are often mediated through metabolic dysfunction. Inflammatory and metabolic processes vary through circadian time, suggesting an important temporal crosstalk between these systems. Using an established mouse model of rheumatoid arthritis, we show that chronic inflammatory arthritis results in rhythmic joint inflammation and drives major changes in muscle and liver energy metabolism and rhythmic gene expression. Transcriptional and phosphoproteomic analyses revealed alterations in lipid metabolism and mitochondrial function associated with increased EGFR-JAK-STAT3 signaling. Metabolomic analyses confirmed rhythmic metabolic rewiring with impaired ß-oxidation and lipid handling and revealed a pronounced shunt toward sphingolipid and ceramide accumulation. The arthritis-related production of ceramides was most pronounced during the day, which is the time of peak inflammation and increased reliance on fatty acid oxidation. Thus, our data demonstrate that localized joint inflammation drives a time-of-day­dependent build-up of bioactive lipid species driven by rhythmic inflammation and altered EGFR-STAT signaling.


Subject(s)
Arthritis , Circadian Clocks , Circadian Rhythm/physiology , Energy Metabolism , Humans , Inflammation/metabolism
2.
Proc Natl Acad Sci U S A ; 117(41): 25869-25879, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989157

ABSTRACT

The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence cistrome and define direct target genes. REVERBα-binding sites are highly enriched for consensus RORE or RevDR2 motifs and overlap with corepressor complex binding. We find no evidence for transcription factor tethering and DNA-binding domain-independent action. Moreover, hepatocyte-specific deletion of Reverbα drives only modest physiological and transcriptional dysregulation, with derepressed target gene enrichment limited to circadian processes. Thus, contrary to previous reports, hepatic REVERBα does not repress lipogenesis under basal conditions. REVERBα control of a more extensive transcriptional program is only revealed under conditions of metabolic perturbation (including mistimed feeding, which is a feature of the global Reverbα-/- mouse). Repressive action of REVERBα in the liver therefore serves to buffer against metabolic challenge, rather than drive basal rhythmicity in metabolic activity.


Subject(s)
Energy Metabolism , Liver/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Amino Acid Motifs , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Clocks , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/chemistry , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
3.
Proc Natl Acad Sci U S A ; 117(3): 1543-1551, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31900362

ABSTRACT

The circadian clock regulates many aspects of immunity. Bacterial infections are affected by time of day, but the mechanisms involved remain undefined. Here we show that loss of the core clock protein BMAL1 in macrophages confers protection against pneumococcal pneumonia. Infected mice show both reduced weight loss and lower bacterial burden in circulating blood. In vivo studies of macrophage phagocytosis reveal increased bacterial ingestion following Bmal1 deletion, which was also seen in vitro. BMAL1-/- macrophages exhibited marked differences in actin cytoskeletal organization, a phosphoproteome enriched for cytoskeletal changes, with reduced phosphocofilin and increased active RhoA. Further analysis of the BMAL1-/- macrophages identified altered cell morphology and increased motility. Mechanistically, BMAL1 regulated a network of cell movement genes, 148 of which were within 100 kb of high-confidence BMAL1 binding sites. Links to RhoA function were identified, with 29 genes impacting RhoA expression or activation. RhoA inhibition restored the phagocytic phenotype to that seen in control macrophages. In summary, we identify a surprising gain of antibacterial function due to loss of BMAL1 in macrophages, associated with a RhoA-dependent cytoskeletal change, an increase in cell motility, and gain of phagocytic function.


Subject(s)
ARNTL Transcription Factors/antagonists & inhibitors , ARNTL Transcription Factors/genetics , Cell Movement/drug effects , Disease Resistance/genetics , Macrophages/drug effects , Phagocytosis/drug effects , Pneumonia, Pneumococcal/metabolism , Actins/metabolism , Animals , Circadian Clocks/genetics , Circadian Clocks/physiology , Cytoskeleton , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Streptococcus pneumoniae/pathogenicity , rhoA GTP-Binding Protein/metabolism
4.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G345-G360, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32755310

ABSTRACT

The pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the progression to nonalcoholic steatohepatitis (NASH) and increased risk of hepatocellular carcinoma remain poorly understood. Additionally, there is increasing recognition of the extrahepatic manifestations associated with NAFLD and NASH. We demonstrate that intervention with the American lifestyle-induced obesity syndrome (ALIOS) diet in male and female mice recapitulates many of the clinical and transcriptomic features of human NAFLD and NASH. Male and female C57BL/6N mice were fed either normal chow (NC) or ALIOS from 11 to 52 wk and underwent comprehensive metabolic analysis throughout the duration of the study. From 26 wk, ALIOS-fed mice developed features of hepatic steatosis, inflammation, and fibrosis. ALIOS-fed mice also had an increased incidence of hepatic tumors at 52 wk compared with those fed NC. Hepatic transcriptomic analysis revealed alterations in multiple genes associated with inflammation and tissue repair in ALIOS-fed mice. Ingenuity Pathway Analysis confirmed dysregulation of metabolic pathways as well as those associated with liver disease and cancer. In parallel the development of a robust hepatic phenotype, ALIOS-fed mice displayed many of the extrahepatic manifestations of NAFLD, including hyperlipidemia, increased fat mass, sarcopenia, and insulin resistance. The ALIOS diet in mice recapitulates many of the clinical features of NAFLD and, therefore, represents a robust and reproducible model for investigating the pathogenesis of NAFLD and its progression.NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) affects 30% of the general population and can progress to nonalcoholic steatohepatitis (NASH) and potentially hepatocellular carcinoma. Preclinical models rely on mouse models that often display hepatic characteristics of NAFLD but rarely progress to NASH and seldom depict the multisystem effects of the disease. We have conducted comprehensive metabolic analysis of both male and female mice consuming a Western diet of trans fats and sugar, focusing on both their hepatic phenotype and extrahepatic manifestations.


Subject(s)
Diet, Western/adverse effects , Fatty Liver/genetics , Life Style , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Animal Feed , Animals , Body Composition , Fatty Liver/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation/genetics , Glucose Tolerance Test , Insulin Resistance , Lipids/blood , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Function Tests , Liver Neoplasms/epidemiology , Liver Neoplasms/genetics , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Syndrome
5.
Proc Natl Acad Sci U S A ; 112(17): 5479-84, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25847991

ABSTRACT

The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily, which controls programs regulating cell proliferation, differentiation, and apoptosis. We have identified an unexpected role for GR in mitosis. We discovered that specifically modified GR species accumulate at the mitotic spindle during mitosis in a distribution that overlaps with Aurora kinases. We found that Aurora A was required to mediate mitosis-driven GR phosphorylation, but not recruitment of GR to the spindle. GR was necessary for mitotic progression, with increased time to complete mitosis, frequency of mitotic aberrations, and death in mitosis observed following GR knockdown. Complementation studies revealed an essential role for the GR ligand-binding domain, but no clear requirement for ligand binding in regulating chromosome segregation. The GR N-terminal domain, and specifically phosphosites S203 and S211, were not required. Reduced GR expression results in a cell cycle phenotype, with isolated cells from mouse and human subjects showing changes in chromosome content over prolonged passage. Furthermore, GR haploinsufficient mice have an increased incidence of tumor formation, and, strikingly, these tumors are further depleted for GR, implying additional GR loss as a consequence of cell transformation. We identified reduced GR expression in a panel of human liver, lung, prostate, colon, and breast cancers. We therefore reveal an unexpected role for the GR in promoting accurate chromosome segregation during mitosis, which is causally linked to tumorigenesis, making GR an authentic tumor suppressor gene.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Chromosome Segregation , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Receptors, Glucocorticoid/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Humans , Mice , Mice, Mutant Strains , Mitosis/genetics , Neoplasms/genetics , Neoplasms/pathology , Protein Structure, Tertiary , Receptors, Glucocorticoid/genetics , Tumor Cells, Cultured , Tumor Suppressor Proteins/genetics
6.
J Biol Chem ; 289(13): 8931-46, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24488492

ABSTRACT

Glucocorticoids (GC) regulate cell fate and immune function. We identified the metastasis-promoting methyltransferase, metastasis-related methyltransferase 1 (WBSCR22/Merm1) as a novel glucocorticoid receptor (GR) regulator relevant to human disease. Merm1 binds the GR co-activator GRIP1 but not GR. Loss of Merm1 impaired both GR transactivation and transrepression by reducing GR recruitment to its binding sites. This was accompanied by loss of GR-dependent H3K4Me3 at a well characterized promoter. Inflammation promotes GC resistance, in part through the actions of TNFα and IFNγ. These cytokines suppressed Merm1 protein expression by driving ubiquitination of two conserved lysine residues. Restoration of Merm1 expression rescued GR transactivation. Cytokine suppression of Merm1 and of GR function was also seen in human lung explants. In addition, striking loss of Merm1 protein was observed in both inflammatory and neoplastic human lung pathologies. In conclusion, Merm1 is a novel regulator of chromatin structure affecting GR recruitment and function, contributing to loss of GC sensitivity in inflammation, with suppressed expression in pulmonary disease.


Subject(s)
Lung Neoplasms/metabolism , Methyltransferases/metabolism , Receptors, Glucocorticoid/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Bronchi/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Chromatin Assembly and Disassembly/drug effects , Epithelium/drug effects , Epithelium/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Glucocorticoids/metabolism , Histones/chemistry , Histones/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interferon-gamma/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lysine/metabolism , Methylation/drug effects , Methyltransferases/chemistry , Protein Binding , Protein Kinases/metabolism , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Glucocorticoid/genetics , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination/drug effects
7.
Nucleic Acids Res ; 41(18): 8515-25, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23887939

ABSTRACT

The glucocorticoid receptor (GR) is a ligand activated transcription factor, serving to regulate both energy metabolism and immune functions. Factors that influence cellular sensitivity to glucocorticoids (GC) are therefore of great interest. The N-terminal of the GR contains numerous potential proline-directed phosphorylation sites, some of which can regulate GR transactivation. Unrestricted proline isomerisation can be inhibited by adjacent serine phosphorylation and requires a prolyl isomerise, Pin1. Pin1 therefore determines the functional outcome of proline-directed kinases acting on the GR, as cis/trans isomers are distinct pools with different interacting proteins. We show that Pin1 mediates GR transactivation, but not GR trans-repression. Two N-terminal GR serines, S203 and S211, are targets for Pin1 potentiation of GR transactivation, establishing a direct link between Pin1 and the GR. We also demonstrate GC-activated co-recruitment of GR and Pin1 to the GILZ gene promoter. The Pin1 effect required both its WW and catalytic domains, and GR recruitment to its GRE was Pin1-dependent. Therefore, Pin1 is a selective regulator of GR transactivation, acting through N-terminal phospho-serine residues to regulate GR recruitment to its target sites in the genome. As Pin1 is dysregulated in disease states, this interaction may contribute to altered GC action in inflammatory conditions.


Subject(s)
Peptidylprolyl Isomerase/physiology , Receptors, Glucocorticoid/metabolism , Transcriptional Activation , Cell Line , Dexamethasone/pharmacology , Humans , NIMA-Interacting Peptidylprolyl Isomerase , Nuclear Receptor Coactivator 3/physiology , Peptidylprolyl Isomerase/antagonists & inhibitors , Phosphorylation , Promoter Regions, Genetic , Protein Stability , Receptors, Glucocorticoid/chemistry , Repressor Proteins/metabolism
8.
Biochem Mol Biol Educ ; 50(5): 446-449, 2022 09.
Article in English | MEDLINE | ID: mdl-35972192

ABSTRACT

The final year of a biochemistry degree is usually a time to experience research. However, laboratory-based research projects were not possible during COVID-19. Instead, we used open datasets to provide computational research projects in metagenomics to biochemistry undergraduates (80 students with limited computing experience). We aimed to give the students a chance to explore any dataset, rather than use a small number of artificial datasets (~60 published datasets were used). To achieve this, we utilized Google Colaboratory (Colab), a virtual computing environment. Colab was used as a framework to retrieve raw sequencing data (analyzed with QIIME2) and generate visualizations. Setting up the environment requires no prior experience; all students have the same drive structure and notebooks can be shared (for synchronous sessions). We also used the platform to combine multiple datasets, perform a meta-analysis, and allowed the students to analyze large datasets with 1000s of subjects and factors. Projects that required increased computational resources were integrated with Google Cloud Compute. In future, all research projects can include some aspects of reanalyzing public data, providing students with data science experience. Colab is also an excellent environment in which to develop data skills in multiple languages (e.g., Perl, Python, Julia).


Subject(s)
COVID-19 , Cloud Computing , COVID-19/epidemiology , Genomics , Humans , Software , Students
9.
Bio Protoc ; 12(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35937930

ABSTRACT

Chromatin immunoprecipitation (ChIP) maps, on a genome-wide scale, transcription factor binding sites, and the distribution of other chromatin-associated proteins and their modifications. As such, it provides valuable insights into mechanisms of gene regulation. However, successful ChIP experiments are dependent on the availability of a high-quality antibody against the target of interest. Using antibodies with poor sensitivity and specificity can yield misleading results. This can be partly circumvented by using epitope-tagged systems ( e.g. , HA, Myc, His), but these approaches are still antibody-dependent. HaloTag ® is a modified dehalogenase enzyme, which covalently binds synthetic ligands. This system can be used for imaging and purification of HaloTag ® fusion proteins, and has been used for ChIP in vitro . Here, we present a protocol for using the HaloTag ® system for ChIP in vivo , to map, with sensitivity and specificity, the cistrome of a dynamic mouse transcription factor expressed at its endogenous locus. Graphical abstract.

10.
Cell Rep ; 39(3): 110697, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35443180

ABSTRACT

The glucocorticoid receptor (GR) is a nuclear receptor critical to the regulation of energy metabolism and inflammation. The actions of GR are dependent on cell type and context. Here, we demonstrate the role of liver lineage-determining factor hepatocyte nuclear factor 4A (HNF4A) in defining liver specificity of GR action. In mouse liver, the HNF4A motif lies adjacent to the glucocorticoid response element (GRE) at GR binding sites within regions of open chromatin. In the absence of HNF4A, the liver GR cistrome is remodeled, with loss and gain of GR recruitment evident. Loss of chromatin accessibility at HNF4A-marked sites associates with loss of GR binding at weak GRE motifs. GR binding and chromatin accessibility are gained at sites characterized by strong GRE motifs, which show GR recruitment in non-liver tissues. The functional importance of these HNF4A-regulated GR sites is indicated by an altered transcriptional response to glucocorticoid treatment in the Hnf4a-null liver.


Subject(s)
Glucocorticoids , Receptors, Glucocorticoid , Animals , Chromatin/metabolism , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factors/metabolism , Liver/metabolism , Mice , Receptors, Glucocorticoid/metabolism
11.
J Endocrinol ; 253(3): 97-113, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35318963

ABSTRACT

Steroid 5ß-reductase (AKR1D1) plays important role in hepatic bile acid synthesis and glucocorticoid clearance. Bile acids and glucocorticoids are potent metabolic regulators, but whether AKR1D1 controls metabolic phenotype in vivo is unknown. Akr1d1-/- mice were generated on a C57BL/6 background. Liquid chromatography/mass spectrometry, metabolomic and transcriptomic approaches were used to determine effects on glucocorticoid and bile acid homeostasis. Metabolic phenotypes including body weight and composition, lipid homeostasis, glucose tolerance and insulin tolerance were evaluated. Molecular changes were assessed by RNA-Seq and Western blotting. Male Akr1d1-/- mice were challenged with a high fat diet (60% kcal from fat) for 20 weeks. Akr1d1-/- mice had a sex-specific metabolic phenotype. At 30 weeks of age, male, but not female, Akr1d1-/- mice were more insulin tolerant and had reduced lipid accumulation in the liver and adipose tissue yet had hypertriglyceridemia and increased intramuscular triacylglycerol. This phenotype was associated with sexually dimorphic changes in bile acid metabolism and composition but without overt effects on circulating glucocorticoid levels or glucocorticoid-regulated gene expression in the liver. Male Akr1d1-/- mice were not protected against diet-induced obesity and insulin resistance. In conclusion, this study shows that AKR1D1 controls bile acid homeostasis in vivo and that altering its activity can affect insulin tolerance and lipid homeostasis in a sex-dependent manner.


Subject(s)
Glucocorticoids , Oxidoreductases , Animals , Bile Acids and Salts , Diet, High-Fat , Female , Glucocorticoids/metabolism , Insulin/metabolism , Lipids , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidoreductases/genetics , Phenotype
12.
J Mol Endocrinol ; 62(4): 169-177, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30917338

ABSTRACT

Chromatin immunoprecipitation (ChIP) is a valuable tool for the endocrine researcher, providing a means to measure the recruitment of hormone-activated nuclear receptors, for example. However, the technique can be challenging to perform and has multiple experimental steps, risking introduction of error at each. The data produced can be challenging to interpret; several different methods are commonly used for normalising data and thus comparing between conditions. Absolute, sensitive quantification of protein-bound DNA is important for correct interpretation of the data. In addition, such quantification can help the investigator in troubleshooting experiments. Here, we outline a ChIP strategy combining droplet digital PCR for accurate quantification with an internal spike-in control for normalisation. This combination strengthens the reliability of ChIP data and allows the operator to optimise their protocol with greater confidence.


Subject(s)
Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Chromatin Immunoprecipitation , Kidney/metabolism , Liver/metabolism , Mice , Polymerase Chain Reaction , Protein Binding , Receptors, Cytoplasmic and Nuclear/genetics
13.
Arthritis Res Ther ; 21(1): 47, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30728072

ABSTRACT

OBJECTIVE: We applied systems biology approaches to investigate circadian rhythmicity in rheumatoid arthritis (RA). METHODS: We recruited adults (age 16-80 years old) with a clinical diagnosis of RA (active disease [DAS28 > 3.2]). Sleep profiles were determined before inpatient measurements of saliva, serum, and peripheral blood mononuclear leukocytes (PBML). Transcriptome and proteome analyses were carried out by RNA-SEQ and LC-MS/MS. Serum samples were analysed by targeted lipidomics, along with serum from mouse collagen induced-arthritis (CIA). Bioinformatic analysis identified RA-specific gene networks and rhythmic processes differing between healthy and RA. RESULTS: RA caused greater time-of-day variation in PBML gene expression, and ex vivo stimulation identified a time-of-day-specific RA transcriptome. We found increased phospho-STAT3 in RA patients, and some targets, including phospho-ATF2, acquired time-of-day variation in RA. Serum ceramides also gained circadian rhythmicity in RA, which was also seen in mouse experimental arthritis, resulting from gain in circadian rhythmicity of hepatic ceramide synthases. CONCLUSION: RA drives a gain in circadian rhythmicity, both in immune cells, and systemically. The coupling of distant timing information to ceramide synthesis and joint inflammation points to a systemic re-wiring of the circadian repertoire. Circadian reprogramming in response to chronic inflammation has implications for inflammatory co-morbidities and time-of-day therapeutics.


Subject(s)
Arthritis, Experimental/genetics , Arthritis, Rheumatoid/genetics , Circadian Rhythm , Leukocytes, Mononuclear/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Ceramides/blood , Female , Gene Expression Profiling/methods , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Leukocytes, Mononuclear/immunology , Male , Mice, Inbred DBA , Middle Aged , Proteomics/methods , Young Adult
14.
J Clin Invest ; 128(10): 4454-4471, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30179226

ABSTRACT

The glucocorticoid receptor (GR) is a major drug target in inflammatory disease. However, chronic glucocorticoid (GC) treatment leads to disordered energy metabolism, including increased weight gain, adiposity, and hepatosteatosis - all programs modulated by the circadian clock. We demonstrated that while antiinflammatory GC actions were maintained irrespective of dosing time, the liver was significantly more GC sensitive during the day. Temporal segregation of GC action was underpinned by a physical interaction of GR with the circadian transcription factor REVERBa and co-binding with liver-specific hepatocyte nuclear transcription factors (HNFs) on chromatin. REVERBa promoted efficient GR recruitment to chromatin during the day, acting in part by maintaining histone acetylation, with REVERBa-dependent GC responses providing segregation of carbohydrate and lipid metabolism. Importantly, deletion of Reverba inverted circadian liver GC sensitivity and protected mice from hepatosteatosis induced by chronic GC administration. Our results reveal a mechanism by which the circadian clock acts through REVERBa in liver on elements bound by HNF4A/HNF6 to direct GR action on energy metabolism.


Subject(s)
Chromatin/metabolism , Circadian Clocks/drug effects , Fatty Liver/metabolism , Glucocorticoids/adverse effects , Liver/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Animals , Chromatin/genetics , Chromatin/pathology , Circadian Clocks/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Fatty Liver/chemically induced , Fatty Liver/genetics , Fatty Liver/pathology , Glucocorticoids/pharmacology , HEK293 Cells , Humans , Liver/pathology , Mice , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
15.
Sci Rep ; 7(1): 6725, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28751734

ABSTRACT

Nephrotic syndrome (NS) occurs when the glomerular filtration barrier becomes excessively permeable leading to massive proteinuria. In childhood NS, immune system dysregulation has been implicated and increasing evidence points to the central role of podocytes in the pathogenesis. Children with NS are typically treated with an empiric course of glucocorticoid (Gc) therapy; a class of steroids that are activating ligands for the glucocorticoid receptor (GR) transcription factor. Although Gc-therapy has been the cornerstone of NS management for decades, the mechanism of action, and target cell, remain poorly understood. We tested the hypothesis that Gc acts directly on the podocyte to produce clinically useful effects without involvement of the immune system. In human podocytes, we demonstrated that the basic GR-signalling mechanism is intact and that Gc induced an increase in podocyte barrier function. Defining the GR-cistrome identified Gc regulation of motility genes. These findings were functionally validated with live-cell imaging. We demonstrated that treatment with Gc reduced the activity of the pro-migratory small GTPase regulator Rac1. Furthermore, Rac1 inhibition had a direct, protective effect on podocyte barrier function. Our studies reveal a new mechanism for Gc action directly on the podocyte, with translational relevance to designing new selective synthetic Gc molecules.


Subject(s)
Glucocorticoids/pharmacology , Podocytes/drug effects , Prednisolone/pharmacology , Protective Agents/pharmacology , Puromycin Aminonucleoside/antagonists & inhibitors , Receptors, Glucocorticoid/genetics , rac1 GTP-Binding Protein/genetics , Antimetabolites, Antineoplastic/toxicity , Biological Transport/drug effects , Cell Line, Transformed , Cell Membrane/drug effects , Cell Movement/drug effects , Electric Impedance , Gene Expression Profiling , Gene Expression Regulation , Humans , Microarray Analysis , Podocytes/cytology , Podocytes/metabolism , Puromycin Aminonucleoside/toxicity , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/metabolism , Signal Transduction , Transcriptome , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
16.
Sci Rep ; 6: 26419, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27226058

ABSTRACT

The glucocorticoid receptor (GR), a nuclear receptor and major drug target, has a highly conserved minor splice variant, GRγ, which differs by a single arginine within the DNA binding domain. GRγ, which comprises 10% of all GR transcripts, is constitutively expressed and tightly conserved through mammalian evolution, suggesting an important non-redundant role. However, to date no specific role for GRγ has been reported. We discovered significant differences in subcellular localisation, and nuclear-cytoplasmic shuttling in response to ligand. In addition the GRγ transcriptome and protein interactome was distinct, and with a gene ontology signal for mitochondrial regulation which was confirmed using Seahorse technology. We propose that evolutionary conservation of the single additional arginine in GRγ is driven by a distinct, non-redundant functional profile, including regulation of mitochondrial function.


Subject(s)
Adenosine Triphosphate/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Receptors, Glucocorticoid/metabolism , A549 Cells , Cell Nucleus/metabolism , Cytoplasm , Evolution, Molecular , Gene Expression Profiling , Gene Regulatory Networks , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Proteomics , Receptors, Glucocorticoid/chemistry
17.
Free Radic Biol Med ; 39(1): 118-32, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15925284

ABSTRACT

trans-Resveratrol (t-RVT) has been shown to have a wide range of anti-inflammatory properties, some of which have been suggested to contribute to the molecular explanation of the French Paradox, a possible reason for the low incidence of heart disease in France. The ability of t-RVT to inhibit the production of reactive oxygen species (ROS) from monocytes (differentiated U937) was investigated using isoluminol, luminol, lucigenin, and 2',7'-dichlorofluorescein (DCF). t-RVT (0.1-50 microM) was found to significantly inhibit cellular ROS production stimulated by f-Met-Leu-Phe (fMLP), 12-phorbol 13-myristate, and arachidonic acid after a 1-h preincubation. The efficacy of t-RVT could be increased if it was added directly into the assay. NADPH-dependent superoxide production was measured in cell homogenates and t-RVT (10-50 microM) was found to have no effect on this activity. The majority of these redox probes require a peroxidase to be oxidized; therefore, the inhibitory effect of t-RVT on ROS measured by these probes is complicated by its ability to be oxidized by peroxidase enzymes and thus compete with the probe. t-RVT, known to be oxidized by the horseradish peroxidase (HRP)/H(2)O(2) system, was found to inhibit the HRP-dependent oxidation of the fluorescent probe DCF and the chemiluminescent probe isoluminol. However, using a redox probe that did not require oxidation by a peroxidase (lucigenin), significant inhibition was still observed. Moreover, the inhibitory effects of t-RVT on fMLP-induced ROS production correlated with significant inhibitory effects on fMLP-induced phosphatidylinositol 3-kinase (PI3K) activity at 50 microM and Akt phosphorylation (10-50 microM). Other known inhibitors of both PI3K and Akt were also found to inhibit this response. Therefore, inhibition of signaling through the PI3K to NADPH oxidase by t-RVT might represent an important anti-inflammatory mechanism.


Subject(s)
Monocytes/drug effects , Monocytes/physiology , Phosphatidylinositol 3-Kinases/physiology , Phosphoinositide-3 Kinase Inhibitors , Respiratory Burst/drug effects , Stilbenes/pharmacology , Acridines/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorescent Dyes/pharmacology , Humans , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , NADPH Oxidases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species/antagonists & inhibitors , Resveratrol , Signal Transduction/drug effects , U937 Cells
18.
J Endocrinol ; 223(2): 155-66, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25161081

ABSTRACT

Glucocorticoids (Gc) are potent anti-inflammatory agents with wide clinical application. We have previously shown that increased serum concentration significantly attenuates regulation of a simple Gc-responsive reporter. We now find that glucocorticoid receptor (GR) regulation of some endogenous transactivated but not transrepressed genes is impaired, suggesting template specificity. Serum did not directly affect GR expression, activity or trafficking, implicating GR crosstalk with other signalling pathways. Indeed, a JNK inhibitor completely abolished the serum effect. We identified the Gc modulating serum component as cholesterol. Cholesterol loading mimicked the serum effect, which was readily reversed by JNK inhibition. Chelation of serum cholesterol with methyl-ß-cyclodextrin or inhibition of cellular cholesterol synthesis with simvastatin potentiated the Gc response. To explore the effect in vivo we used ApoE(-/-) mice, a model of hypercholesterolaemia. Consistent with our in vitro studies, we find no impact of elevated cholesterol on the expression of GR, or on the hypothalamic-pituitary-adrenal axis, measured by dexamethasone suppression test. Instead we find selective Gc resistance on some hepatic target genes in ApoE(-/-) mice. Therefore, we have discovered an unexpected role for cholesterol as a selective modulator of Gc action in vivo. Taken together these findings reveal a new environmental constraint on Gc action with relevance to both inflammation and cancer.


Subject(s)
Cholesterol/blood , Drug Resistance , Glucocorticoids/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Animals , Apolipoproteins E/genetics , Enzyme Activation/drug effects , Female , HeLa Cells , Humans , Metabolism, Inborn Errors/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/genetics
19.
Diseases ; 1(1): 1-17, 2013 Dec.
Article in English | MEDLINE | ID: mdl-27891249

ABSTRACT

Pre-eclampsia is a pregnancy-specific disorder characterised by hypertension and proteinuria, which in severe cases results in multi-system disturbances. The maternal syndrome is associated with a pro-inflammatory state, consisting of leukocyte activation, which is thought to contribute to the widespread endothelial dysfunction. We previously showed increased activation of NADPH oxidase in pre-eclampsia, in both neutrophils and B-lymphoblast cell lines (B-LCLs). In this study, the mechanism by which NADPH oxidase activity is increased in pre-eclampsia was further investigated. NADPH oxidase activity was found to be increased in phorbol-12-myristate-13-acetate (PMA) stimulated B-LCLs isolated from women with pre-eclampsia. This correlated with an increase in protein kinase C (PKC) substrate phosphorylation, p47-phox phosphorylation (a regulatory component of NADPH oxidase) and p47-phox directed-kinase activity. Using ion exchange and hydroxyapatite chromatography we identified a major peak of PMA regulated p47-phox kinase activity. Chromatography fractions were probed for PKC isoforms. We found the major peak of p47-phox kinase activity could not be separated from the elution profile of PKC epsilon. Using a peptide inhibitor of PKC epsilon, PMA-induced reactive oxygen species (ROS) production could be reduced to that of a normal B-LCL. These data suggest a pro-inflammatory role for PKC epsilon in the pathogenesis of pre-eclampsia.

SELECTION OF CITATIONS
SEARCH DETAIL