Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Neurosci ; 38(4): 1030-1041, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29255009

ABSTRACT

Hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of ryanodine receptor Ca2+ release, reverses aging-induced memory impairment and neuronal Ca2+ dysregulation. Here, we tested the hypothesis that FKBP1b also can protect downstream transcriptional networks from aging-induced dysregulation. We gave hippocampal microinjections of FKBP1b-expressing viral vector to male rats at either 13 months of age (long-term, LT) or 19 months of age (short-term, ST) and tested memory performance in the Morris water maze at 21 months of age. Aged rats treated ST or LT with FKBP1b substantially outperformed age-matched vector controls and performed similarly to each other and young controls (YCs). Transcriptional profiling in the same animals identified 2342 genes with hippocampal expression that was upregulated/downregulated in aged controls (ACs) compared with YCs (the aging effect). Of these aging-dependent genes, 876 (37%) also showed altered expression in aged FKBP1b-treated rats compared with ACs, with FKBP1b restoring expression of essentially all such genes (872/876, 99.5%) in the direction opposite the aging effect and closer to levels in YCs. This inverse relationship between the aging and FKBP1b effects suggests that the aging effects arise from FKBP1b deficiency. Functional category analysis revealed that genes downregulated with aging and restored by FKBP1b were associated predominantly with diverse brain structure categories, including cytoskeleton, membrane channels, and extracellular region. Conversely, genes upregulated with aging but not restored by FKBP1b associated primarily with glial-neuroinflammatory, ribosomal, and lysosomal categories. Immunohistochemistry confirmed aging-induced rarefaction and FKBP1b-mediated restoration of neuronal microtubular structure. Therefore, a previously unrecognized genomic network modulating diverse brain structural processes is dysregulated by aging and restored by FKBP1b overexpression.SIGNIFICANCE STATEMENT Previously, we found that hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of intracellular Ca2+ responses, reverses both aging-related Ca2+ dysregulation and cognitive impairment. Here, we tested whether hippocampal FKBP1b overexpression also counteracts aging changes in gene transcriptional networks. In addition to reducing memory deficits in aged rats, FKBP1b selectively counteracted aging-induced expression changes in 37% of aging-dependent genes, with cytoskeletal and extracellular structure categories highly associated with the FKBP1b-rescued genes. Our results indicate that, in parallel with cognitive processes, a novel transcriptional network coordinating brain structural organization is dysregulated with aging and restored by FKBP1b.


Subject(s)
Aging/physiology , Gene Expression Regulation/physiology , Hippocampus/metabolism , Memory/physiology , Tacrolimus Binding Proteins/metabolism , Animals , Calcium Signaling/physiology , Hippocampus/physiopathology , Male , Memory Disorders/physiopathology , Rats , Rats, Inbred F344 , Rats, Transgenic
2.
Biochem Biophys Res Commun ; 483(4): 981-987, 2017 02 19.
Article in English | MEDLINE | ID: mdl-27553276

ABSTRACT

Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer's disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely, can alter neuronal communication and synaptic strength in positive ways, without necessarily killing neurons. Here, we focus on the evidence that calcium has a subtle and distinctive role in shaping and controlling synaptic events that underpin neuronal communication and that these subtle changes in aging or AD may contribute to cognitive decline. We emphasize that calcium imaging in dendritic components is ultimately necessary to directly test for the presence of age- or disease-associated alterations during periods of synaptic activation.


Subject(s)
Brain/physiology , Calcium/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Brain/pathology , Humans , Models, Biological
3.
Proc Natl Acad Sci U S A ; 111(41): E4359-66, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267625

ABSTRACT

Vitamin D is an important calcium-regulating hormone with diverse functions in numerous tissues, including the brain. Increasing evidence suggests that vitamin D may play a role in maintaining cognitive function and that vitamin D deficiency may accelerate age-related cognitive decline. Using aging rodents, we attempted to model the range of human serum vitamin D levels, from deficient to sufficient, to test whether vitamin D could preserve or improve cognitive function with aging. For 5-6 mo, middle-aged F344 rats were fed diets containing low, medium (typical amount), or high (100, 1,000, or 10,000 international units/kg diet, respectively) vitamin D3, and hippocampal-dependent learning and memory were then tested in the Morris water maze. Rats on high vitamin D achieved the highest blood levels (in the sufficient range) and significantly outperformed low and medium groups on maze reversal, a particularly challenging task that detects more subtle changes in memory. In addition to calcium-related processes, hippocampal gene expression microarrays identified pathways pertaining to synaptic transmission, cell communication, and G protein function as being up-regulated with high vitamin D. Basal synaptic transmission also was enhanced, corroborating observed effects on gene expression and learning and memory. Our studies demonstrate a causal relationship between vitamin D status and cognitive function, and they suggest that vitamin D-mediated changes in hippocampal gene expression may improve the likelihood of successful brain aging.


Subject(s)
Aging/pathology , Cognition Disorders/prevention & control , Cognition Disorders/physiopathology , Hippocampus/physiopathology , Synaptic Transmission , Vitamin D/therapeutic use , Aging/drug effects , Animals , Cognition Disorders/drug therapy , Diet , Hippocampus/drug effects , Hippocampus/pathology , Humans , Male , Maze Learning/drug effects , Models, Neurological , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rats, Inbred F344 , Response Elements/genetics , Software , Synaptic Transmission/drug effects , Up-Regulation/drug effects , Vitamin D/blood , Vitamin D/pharmacology
4.
J Neurosci ; 35(30): 10878-87, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26224869

ABSTRACT

Brain Ca2+ regulatory processes are altered during aging, disrupting neuronal, and cognitive functions. In hippocampal pyramidal neurons, the Ca2+ -dependent slow afterhyperpolarization (sAHP) exhibits an increase with aging, which correlates with memory impairment. The increased sAHP results from elevated L-type Ca2+ channel activity and ryanodine receptor (RyR)-mediated Ca2+ release, but underlying molecular mechanisms are poorly understood. Previously, we found that expression of the gene encoding FK506-binding protein 12.6/1b (FKBP1b), a small immunophilin that stabilizes RyR-mediated Ca2+ release in cardiomyocytes, declines in hippocampus of aged rats and Alzheimer's disease subjects. Additionally, knockdown/disruption of hippocampal FKBP1b in young rats augments neuronal Ca2+ responses. Here, we test the hypothesis that declining FKBP1b underlies aging-related hippocampal Ca2+ dysregulation. Using microinjection of adeno-associated viral vector bearing a transgene encoding FKBP1b into the hippocampus of aged male rats, we assessed the critical prediction that overexpressing FKBP1b should reverse Ca2+ -mediated manifestations of brain aging. Immunohistochemistry and qRT-PCR confirmed hippocampal FKBP1b overexpression 4-6 weeks after injection. Compared to aged vector controls, aged rats overexpressing FKBP1b showed dramatic enhancement of spatial memory, which correlated with marked reduction of sAHP magnitude. Furthermore, simultaneous electrophysiological recording and Ca2+ imaging in hippocampal neurons revealed that the sAHP reduction was associated with a decrease in parallel RyR-mediated Ca2+ transients. Thus, hippocampal FKBP1b overexpression reversed key aspects of Ca2+ dysregulation and cognitive impairment in aging rats, supporting the novel hypothesis that declining FKBP1b is a molecular mechanism underlying aging-related Ca2+ dysregulation and unhealthy brain aging and pointing to FKBP1b as a potential therapeutic target. SIGNIFICANCE STATEMENT: This paper reports critical tests of a novel hypothesis that proposes a molecular mechanism of unhealthy brain aging and possibly, Alzheimer's disease. For more than 30 years, evidence has been accumulating that brain aging is associated with dysregulation of calcium in neurons. Recently, we found that FK506-binding protein 12.6/1b (FKBP1b), a small protein that regulates calcium, declines with aging in the hippocampus, a brain region important for memory. Here we used gene therapy approaches and found that raising FKBP1b reversed calcium dysregulation and memory impairment in aging rats, allowing them to perform a memory task as well as young rats. These studies identify a potential molecular mechanism of brain aging and may also have implications for treatment of Alzheimer's disease.


Subject(s)
Aging/physiology , Calcium/metabolism , Cognition/physiology , Neurons/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Cognition Disorders/etiology , Cognition Disorders/metabolism , Hippocampus/metabolism , Immunohistochemistry , Male , Patch-Clamp Techniques , Rats , Rats, Inbred F344 , Rats, Transgenic , Real-Time Polymerase Chain Reaction , Transgenes
5.
J Neurosci ; 31(5): 1693-703, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21289178

ABSTRACT

With aging, multiple Ca(2+)-associated electrophysiological processes exhibit increased magnitude in hippocampal pyramidal neurons, including the Ca(2+)-dependent slow afterhyperpolarization (sAHP), L-type voltage-gated Ca(2+) channel (L-VGCC) activity, Ca(2+)-induced Ca(2+) release (CICR) from ryanodine receptors (RyRs), and Ca(2+) transients. This pattern of Ca(2+) dysregulation correlates with reduced neuronal excitability/plasticity and impaired learning/memory and has been proposed to contribute to unhealthy brain aging and Alzheimer's disease. However, little is known about the underlying molecular mechanisms. In cardiomyocytes, FK506-binding protein 1b/12.6 (FKBP1b) binds and stabilizes RyR2 in the closed state, inhibiting RyR-mediated Ca(2+) release. Moreover, we recently found that hippocampal Fkbp1b expression is downregulated, whereas Ryr2 and Frap1/Mtor (mammalian target of rapamycin) expression is upregulated with aging in rats. Here, we tested the hypothesis that disrupting FKBP1b function also destabilizes Ca(2+) homeostasis in hippocampal neurons and is sufficient to induce the aging phenotype of Ca(2+) dysregulation in young animals. Selective knockdown of Fkbp1b with interfering RNA in vitro (96 h) enhanced voltage-gated Ca(2+) current in cultured neurons, whereas in vivo Fkbp1b knockdown by microinjection of viral vector (3-4 weeks) dramatically increased the sAHP in hippocampal slice neurons from young-adult rats. Rapamycin, which displaces FKBP1b from RyRs in myocytes, similarly enhanced VGCC current and the sAHP and also increased CICR. Moreover, FKBP1b knockdown in vivo was associated with upregulation of RyR2 and mTOR protein expression. Thus, disruption of FKBP1b recapitulated much of the Ca(2+)-dysregulation aging phenotype in young rat hippocampus, supporting a novel hypothesis that declining FKBP function plays a major role in unhealthy brain aging.


Subject(s)
Aging/metabolism , Calcium Channels, L-Type/metabolism , Calcium Signaling , Calcium/metabolism , Hippocampus/physiopathology , Pyramidal Cells/physiopathology , Ryanodine Receptor Calcium Release Channel/metabolism , Tacrolimus Binding Proteins/metabolism , Aging/genetics , Animals , Cells, Cultured , Electrophysiology , Gene Knockdown Techniques , Genetic Vectors , Hippocampus/metabolism , Homeostasis/drug effects , Immunohistochemistry , Male , Membrane Potentials/drug effects , Microinjections , Patch-Clamp Techniques , Polymerase Chain Reaction , Pyramidal Cells/metabolism , Rats , Rats, Inbred F344 , Sirolimus/pharmacology , Tacrolimus Binding Proteins/genetics
6.
J Neurosci ; 30(17): 6058-71, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20427664

ABSTRACT

Age-dependent metabolic syndrome (MetS) is a well established risk factor for cardiovascular disease, but it also confers major risk for impaired cognition in normal aging or Alzheimer's disease (AD). However, little is known about the specific pathways mediating MetS-brain interactions. Here, we performed the first studies quantitatively linking MetS variables to aging changes in brain genome-wide expression and mitochondrial function. In six young adult and six aging female rhesus monkeys, we analyzed gene expression in two major hippocampal subdivisions critical for memory/cognitive function [hippocampus proper, or cornu ammonis (CA), and dentate gyrus (DG)]. Genes that changed with aging [aging-related genes (ARGs)] were identified in each region. Serum variables reflecting insulin resistance and dyslipidemia were used to construct a quantitative MetS index (MSI). This MSI increased with age and correlated negatively with hippocampal mitochondrial function (state III oxidation). More than 2000 ARGs were identified in CA and/or DG, in approximately equal numbers, but substantially more ARGs in CA than in DG were correlated selectively with the MSI. Pathways represented by MSI-correlated ARGs were determined from the Gene Ontology Database and literature. In particular, upregulated CA ARGs representing glucocorticoid receptor (GR), chromatin assembly/histone acetyltransferase, and inflammatory/immune pathways were closely associated with the MSI. These results suggest a novel model in which MetS is associated with upregulation of hippocampal GR-dependent transcription and epigenetic coactivators, contributing to decreased mitochondrial function and brain energetic dysregulation. In turn, these MSI-associated neuroenergetic changes may promote inflammation, neuronal vulnerability, and risk of cognitive impairment/AD.


Subject(s)
Aging/genetics , Aging/metabolism , Dentate Gyrus/metabolism , Gene Expression , Hippocampus/metabolism , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Aging/blood , Animals , Databases, Genetic , Dyslipidemias/blood , Dyslipidemias/genetics , Dyslipidemias/metabolism , Female , Insulin/metabolism , Insulin Resistance , Macaca mulatta , Metabolic Syndrome/blood , Mitochondria/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction , Species Specificity
7.
J Neurosci ; 29(19): 6058-67, 2009 May 13.
Article in English | MEDLINE | ID: mdl-19439583

ABSTRACT

An increase in L-type voltage-gated calcium channel (LTCC) current is a prominent biomarker of brain aging and is believed to contribute to cognitive decline and vulnerability to neuropathologies. Studies examining age-related changes in LTCCs have focused primarily on males, although estrogen (17beta-estradiol, E2) affects calcium-dependent activities associated with cognition. Therefore, to better understand brain aging in females, the effects of chronic E2 replacement on LTCC current activity in hippocampal neurons of young and aged ovariectomized rats were determined. The zipper slice preparation was used to expose cornu ammonis 1 (CA1) pyramidal neurons for recording LTCC currents using the cell-attached patch-clamp technique. We found that an age-related increase in LTCC current in neurons from control animals was prevented by E2 treatment. In addition, in situ hybridization revealed that within stratum pyramidale of the CA1 area, mRNA expression of the Ca(v)1.2 LTCC subunit, but not the Ca(v)1.3 subunit, was decreased in aged E2-treated rats. Thus, the reported benefits of E2 on cognition and neuronal health may be attributed, at least in part, to its age-related decrease in LTCC current.


Subject(s)
Aging/physiology , Calcium Channels, L-Type/metabolism , Calcium Channels/metabolism , Estradiol/pharmacology , Estrogen Replacement Therapy , Hippocampus/drug effects , Pyramidal Cells/drug effects , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels, L-Type/genetics , Female , Gene Expression , Hippocampus/cytology , Hippocampus/physiology , In Vitro Techniques , Membrane Potentials/physiology , Ovariectomy , Patch-Clamp Techniques , Pyramidal Cells/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred F344
8.
J Neurosci ; 29(6): 1805-16, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19211887

ABSTRACT

Multiple hippocampal processes and cognitive functions change with aging or Alzheimer's disease, but the potential triggers of these aging cascades are not well understood. Here, we quantified hippocampal expression profiles and behavior across the adult lifespan to identify early aging changes and changes that coincide with subsequent onset of cognitive impairment. Well powered microarray analyses (N = 49 arrays), immunohistochemistry, and Morris spatial maze learning were used to study male F344 rats at five age points. Genes that changed with aging (by ANOVA) were assigned to one of four onset age ranges based on template pattern matching; functional pathways represented by these genes were identified statistically (Gene Ontology). In the earliest onset age range (3-6 months old), upregulation began for genes in lipid/protein catabolic and lysosomal pathways, indicating a shift in metabolic substrates, whereas downregulation began for lipid synthesis, GTP/ATP-dependent signaling, and neural development genes. By 6-9 months of age, upregulation of immune/inflammatory cytokines was pronounced. Cognitive impairment first appeared in the midlife range (9-12 months) and coincided and correlated primarily with midlife upregulation of genes associated with cholesterol trafficking (apolipoprotein E), myelinogenic, and proteolytic/major histocompatibility complex antigen-presenting pathways. Immunolabeling revealed that cholesterol trafficking proteins were substantially increased in astrocytes and that myelination increased with aging. Together, our data suggest a novel sequential model in which an early-adult metabolic shift, favoring lipid/ketone body oxidation, triggers inflammatory degradation of myelin and resultant excess cholesterol that, by midlife, activates cholesterol transport from astrocytes to remyelinating oligodendrocytes. These processes may damage structure and compete with neuronal pathways for bioenergetic resources, thereby impairing cognitive function.


Subject(s)
Aging/metabolism , Cholesterol/metabolism , Cognition/physiology , Hippocampus/metabolism , Memory Disorders/metabolism , Animals , Animals, Newborn , Cognition Disorders/metabolism , Energy Metabolism/physiology , Male , Maze Learning/physiology , Memory Disorders/etiology , Rats , Rats, Inbred F344
9.
J Gerontol A Biol Sci Med Sci ; 75(6): 1021-1030, 2020 05 22.
Article in English | MEDLINE | ID: mdl-31180116

ABSTRACT

Intranasal insulin is a safe and effective method for ameliorating memory deficits associated with pathological brain aging. However, the impact of different formulations and the duration of treatment on insulin's efficacy and the cellular processes targeted by the treatment remain unclear. Here, we tested whether intranasal insulin aspart, a short-acting insulin formulation, could alleviate memory decline associated with aging and whether long-term treatment affected regulation of insulin receptors and other potential targets. Outcome variables included measures of spatial learning and memory, autoradiography and immunohistochemistry of the insulin receptor, and hippocampal microarray analyses. Aged Fischer 344 rats receiving long-term (3 months) intranasal insulin did not show significant memory enhancement on the Morris water maze task. Autoradiography results showed that long-term treatment reduced insulin binding in the thalamus but not the hippocampus. Results from hippocampal immunofluorescence revealed age-related decreases in insulin immunoreactivity that were partially offset by intranasal administration. Microarray analyses highlighted numerous insulin-sensitive genes, suggesting insulin aspart was able to enter the brain and alter hippocampal RNA expression patterns including those associated with tumor suppression. Our work provides insights into potential mechanisms of intranasal insulin and insulin resistance, and highlights the importance of treatment duration and the brain regions targeted.


Subject(s)
Aging/physiology , Insulin Aspart/administration & dosage , Memory Disorders/drug therapy , Receptor, Insulin/metabolism , Administration, Intranasal , Animals , Gene Expression , Hippocampus/metabolism , Insulin Aspart/genetics , Insulin Aspart/pharmacology , Male , Maze Learning , Models, Animal , Rats , Rats, Inbred F344
10.
J Neurochem ; 109(6): 1800-11, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19453298

ABSTRACT

Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer's disease (AD), anti-diabetic agents (thiazolidinediones-TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients. Based on evidence that Ca(2+) dysregulation is a pathogenic factor of brain aging/AD, we tested the hypothesis that TZDs could impact Ca(2+) signaling/homeostasis in neurons. We assessed the effects of pioglitazone and rosiglitazone (TZDs) on two major sources of Ca(2+) influx in primary hippocampal cultured neurons, voltage-gated Ca(2+) channel (VGCC) and the NMDA receptor (NMDAR). VGCC- and NMDAR-mediated Ca(2+) currents were recorded using patch-clamp techniques, and Ca(2+) intracellular levels were monitored with Ca(2+) imaging techniques. Rosiglitazone, but not pioglitazone reduced VGCC currents. In contrast, NMDAR-mediated currents were significantly reduced by pioglitazone but not rosiglitazone. These results show that TZDs modulate Ca(2+)-dependent pathways in the brain and have different inhibitory profiles on two major Ca(2+) sources, potentially conferring neuroprotection to an area of the brain that is particularly vulnerable to the effects of aging and/or AD.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Hippocampus/cytology , Neurons/drug effects , PPAR gamma/agonists , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Calcium Channels/drug effects , Calcium Channels/physiology , Calcium Signaling/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Drug Interactions , Electric Stimulation/methods , Embryo, Mammalian , Enzyme-Linked Immunosorbent Assay/methods , Excitatory Amino Acid Antagonists/pharmacology , Female , Hypoglycemic Agents/pharmacology , Neuroglia , PPAR gamma/metabolism , Patch-Clamp Techniques/methods , Pioglitazone , Pregnancy , Protein Binding/drug effects , Rats , Receptors, N-Methyl-D-Aspartate/physiology , Rosiglitazone , Thiazolidinediones/pharmacology , Time Factors
11.
Exp Neurol ; 313: 79-87, 2019 03.
Article in English | MEDLINE | ID: mdl-30576640

ABSTRACT

It has been >20 years since studies first revealed that the brain is insulin sensitive, highlighted by the expression of insulin receptors in neurons and glia, the presence of circulating brain insulin, and even localized insulin production. Following these discoveries, evidence of decreased brain insulin receptor number and function was reported in both clinical samples and animal models of aging and Alzheimer's disease, setting the stage for the hypothesis that neuronal insulin resistance may underlie memory loss in these conditions. The development of therapeutic insulin delivery to the brain using intranasal insulin administration has been shown to improve aspects of memory or learning in both humans and animal models. However, whether this approach functions by compensating for poorly signaling insulin receptors, for reduced insulin levels in the brain, or for reduced trafficking of insulin into the brain remains unclear. Direct measures of insulin's impact on cellular physiology and metabolism in the brain have been sparse in models of Alzheimer's disease, and even fewer studies have analyzed these processes in the aged brain. Nevertheless, recent evidence supports the role of brain insulin as a mediator of glucose metabolism through several means, including altering glucose transporters. Here, we provide a review of contemporary literature on brain insulin resistance, highlight the rationale for improving memory function using intranasal insulin, and describe initial results from experiments using a molecular approach to more directly measure the impact of insulin receptor activation and signaling on glucose uptake in neurons.


Subject(s)
Aging/physiology , Alzheimer Disease/physiopathology , Brain/physiology , Brain/physiopathology , Insulin Resistance/physiology , Insulin/physiology , Aged , Aged, 80 and over , Humans
12.
J Neurosci ; 27(12): 3098-110, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17376971

ABSTRACT

Although expression of some genes is known to change during neuronal activity or plasticity, the overall relationship of gene expression changes to memory or memory disorders is not well understood. Here, we combined extensive statistical microarray analyses with behavioral testing to comprehensively identify genes and pathways associated with aging and cognitive dysfunction. Aged rats were separated into cognitively unimpaired (AU) or impaired (AI) groups based on their Morris water maze performance relative to young-adult (Y) animals. Hippocampal gene expression was assessed in Y, AU, and AI on the fifth (last) day of maze training (5T) or 21 d posttraining (21PT) and in nontrained animals (eight groups total, one array per animal; n = 78 arrays). ANOVA and linear contrasts identified genes that differed from Y generally with aging (differed in both AU and AI) or selectively, with cognitive status (differed only in AI or AU). Altered pathways/processes were identified by overrepresentation analyses of changed genes. With general aging, there was downregulation of axonal growth, cytoskeletal assembly/transport, signaling, and lipogenic/uptake pathways, concomitant with upregulation in immune/inflammatory, lysosomal, lipid/protein degradation, cholesterol transport, transforming growth factor, and cAMP signaling pathways, primarily independent of training condition. Selectively, in AI, there was downregulation at 5T of immediate-early gene, Wnt (wingless integration site), insulin, and G-protein signaling, lipogenesis, and glucose utilization pathways, whereas Notch2 (oligodendrocyte development) and myelination pathways were upregulated, particularly at 21PT. In AU, receptor/signal transduction genes were upregulated, perhaps as compensatory responses. Immunohistochemistry confirmed and extended selected microarray results. Together, the findings suggest a new model, in which deficient neuroenergetics leads to downregulated neuronal signaling and increased glial activation, resulting in aging-related cognitive dysfunction.


Subject(s)
Cognition Disorders/physiopathology , Gene Expression Regulation/physiology , Genes, Immediate-Early/physiology , Hippocampus/metabolism , Nerve Fibers, Myelinated/physiology , Age Factors , Animals , Cognition Disorders/genetics , Cognition Disorders/pathology , Hippocampus/cytology , Male , Maze Learning/physiology , Nerve Net/cytology , Nerve Net/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/cytology , Neurons/physiology , Rats , Rats, Inbred F344
13.
J Alzheimers Dis ; 66(4): 1371-1378, 2018.
Article in English | MEDLINE | ID: mdl-30412490

ABSTRACT

Aging is the leading risk factor for idiopathic Alzheimer's disease (AD), indicating that normal aging processes promote AD and likely are present in the neurons in which AD pathogenesis originates. In AD, neurofibrillary tangles (NFTs) appear first in entorhinal cortex, implying that aging processes in entorhinal neurons promote NFT pathogenesis. Using electrophysiology and immunohistochemistry, we find pronounced aging-related Ca2 + dysregulation in rat entorhinal neurons homologous with the human neurons in which NFTs originate. Considering that humans recapitulate many aspects of animal brain aging, these results support the hypothesis that aging-related Ca2 + dysregulation occurs in human entorhinal neurons and promotes NFT pathogenesis.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Entorhinal Cortex/metabolism , Neurons/metabolism , Alzheimer Disease/pathology , Animals , Entorhinal Cortex/pathology , Male , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/pathology , Rats , Rats, Inbred F344
14.
Curr Alzheimer Res ; 4(2): 205-12, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17430248

ABSTRACT

The original glucocorticoid (GC) hypothesis of brain aging and Alzheimer's disease proposed that chronic exposure to GCs promotes hippocampal aging and AD. This proposition arose from a study correlating increasing plasma corticosterone with hippocampal astrocyte reactivity in aging rats. Numerous subsequent studies have found evidence consistent with this hypothesis, in animal models and in humans. However, several results emerged that were inconsistent with the hypothesis, highlighting the need for a more definitive test with a broader panel of biomarkers. We used microarray analyses to identify a panel of hippocampal gene expression changes that were aging-dependent, and also corticosterone-dependent. These data enabled us to test a key prediction of the GC hypothesis, namely, that the expression of most target biomarkers of brain aging should be regulated in the same direction (increased or decreased) by both GCs and aging. This prediction was decisively contradicted, as a majority of biomarker genes were regulated in opposite directions by aging and GCs, particularly inflammatory and astrocyte-specific genes. Thus, the initial hypothesis of simple positive cooperativity between GCs and aging must be rejected. Instead, our microarray data suggest that in the brain GCs and aging interact in more complex ways that depend on the cell type. Therefore, we propose a new version of the GC-brain aging hypothesis; its main premise is that aging selectively increases GC efficacy in some cell types (e.g., neurons), enhancing catabolic processes, whereas aging selectively decreases GC efficacy in other cell types (e.g., astrocytes), weakening GC anti-inflammatory activity. We also propose that changes in GC efficacy might be mediated in part by cell type specific shifts in the antagonistic balance between GC and insulin actions, which may be of relevance for Alzheimer's disease pathogenesis.


Subject(s)
Aging , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/pathology , Glucocorticoids/physiology , Alzheimer Disease/genetics , Animals , Brain/metabolism , Humans , Models, Biological
15.
Brain Res ; 1151: 20-31, 2007 Jun 02.
Article in English | MEDLINE | ID: mdl-17433272

ABSTRACT

Excessive glutamate (Glu) stimulation of the NMDA-R is a widely recognized trigger for Ca(2+)-mediated excitotoxicity. Primary neurons typically show a large increase in vulnerability to excitotoxicity with increasing days in vitro (DIV). This enhanced vulnerability has been associated with increased expression of the NR2B subunit or increased NMDA-R current, but the detailed age-courses of these variables in primary hippocampal neurons have not been compared in the same study. Further, it is not clear whether the NMDA-R is the only source of excess Ca(2+). Here, we used primary hippocampal neurons to examine the age dependence of the increase in excitotoxic vulnerability with changes in NMDA-R current, and subunit expression. We also tested whether L-type voltage-gated Ca(2+) channels (L-VGCCs) contribute to the enhanced vulnerability. The EC(50) for Glu toxicity decreased by approximately 10-fold between 8-9 and 14-15 DIV, changing little thereafter. Parallel experiments found that during the same period both amplitude and duration of NMDA-R current increased dramatically; this was associated with an increase in protein expression of the NR1 and NR2A subunits, but not of the NR2B subunit. Compared to MK-801, ifenprodil, a selective NR2B antagonist, was less effective in protecting older than younger neurons from Glu insult. Conversely, nimodipine, an L-VGCC antagonist, protected older but not younger neurons. Our results indicate that enhanced excitotoxic vulnerability with age in culture was associated with a substantial increase in NMDA-R current, concomitant increases in NR2A and NR1 but not NR2B subunit expression, and with apparent recruitment of L-VGCCs into the excitotoxic process.


Subject(s)
Aging/physiology , Hippocampus/cytology , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type , Cell Survival/drug effects , Cells, Cultured , Dizocilpine Maleate/pharmacology , Embryo, Mammalian , Female , Gene Expression/drug effects , Glutamic Acid/toxicity , L-Lactate Dehydrogenase/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , N-Methylaspartate/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Patch-Clamp Techniques/methods , Pregnancy , Rats , Rats, Sprague-Dawley
16.
J Gerontol A Biol Sci Med Sci ; 72(2): 189-197, 2017 02.
Article in English | MEDLINE | ID: mdl-27069097

ABSTRACT

Novel therapies have turned to delivering compounds to the brain using nasal sprays, bypassing the blood brain barrier, and enriching treatment options for brain aging and/or Alzheimer's disease. We conducted a series of in vivo experiments to test the impact of intranasal Apidra, a zinc-free insulin formulation, on the brain of young and aged F344 rats. Both single acute and repeated daily doses were compared to test the hypothesis that insulin could improve memory recall in aged memory-deficient animals. We quantified insulin signaling in different brain regions and at different times following delivery. We measured cerebral blood flow (CBF) using MRI and also characterized several brain metabolite levels using MR spectroscopy. We show that neither acute nor chronic Apidra improved memory or recall in young or aged animals. Within 2 hours of a single dose, increased insulin signaling was seen in ventral areas of the aged brains only. Although chronic Apidra was able to offset reduced CBF with aging, it also caused significant reductions in markers of neuronal integrity. Our data suggest that this zinc-free insulin formulation may actually hasten cognitive decline with age when used chronically.


Subject(s)
Brain/drug effects , Brain/metabolism , Cognition/drug effects , Insulin/analogs & derivatives , Signal Transduction/drug effects , Administration, Intranasal , Age Factors , Animals , Cerebrovascular Circulation , Insulin/administration & dosage , Insulin/pharmacology , Male , Rats , Rats, Inbred F344 , Zinc
17.
Neuroscience ; 364: 130-142, 2017 Nov 19.
Article in English | MEDLINE | ID: mdl-28939258

ABSTRACT

Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer's disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in the brain. Indeed, increasing insulin signaling in the brain via intranasal delivery has yielded promising results such as improving memory in both clinical and animal studies. However, while several mechanisms have been proposed, few have focused on regulation on intracellular Ca2+. In the present study, we further examined the effects of acute insulin on calcium pathways in primary hippocampal neurons in culture. Using the whole-cell patch-clamp technique, we found that acute insulin delivery reduced voltage-gated calcium currents. Fura-2 imaging was used to also address acute insulin effects on spontaneous and depolarization-mediated Ca2+ transients. Results indicate that insulin reduced Ca2+ transients, which appears to have involved a reduction in ryanodine receptor function. Together, these results suggest insulin regulates pathways that control intracellular Ca2+ which may reduce the AHP and improve memory. This may be one mechanism contributing to improved memory recall in response to intranasal insulin therapy in the clinic.


Subject(s)
Aging/metabolism , Calcium/metabolism , Hippocampus/metabolism , Insulin/metabolism , Insulin/pharmacology , Neurons/metabolism , Signal Transduction , Animals , Cells, Cultured , Insulin/administration & dosage , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
18.
Cell Calcium ; 40(3): 277-86, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16780945

ABSTRACT

Aging in the hippocampus of several species is characterized by alterations in multiple Ca(2+)-mediated processes, including an increase in L-type voltage-gated Ca(2+) channel (L-VGCC) current, an enhanced Ca(2+)-dependent slow afterhyperpolarization (AHP), impaired synaptic plasticity and elevated Ca(2+) transients. Previously, we found that 1alpha,25-dihydoxyvitamin D(3) (1,25VitD), a major Ca(2+) regulating hormone, down-regulates L-VGCC expression in cultured hippocampal neurons. Here, we tested whether in vivo treatment of aged F344 rats with 1,25VitD would reverse some of the Ca(2+) -mediated biomarkers of aging seen in hippocampal CA1 neurons. As previously reported, L-VGCC currents and the AHP were larger in aged than in young neurons. Treatment with 1,25VitD over 7 days decreased L-VGCC activity in aged rats, as well as the age-related increase in AHP amplitude and duration. In addition, reduced L-VGCC activity was correlated with reduced AHPs in the same animals. These data provide direct evidence that 1,25VitD can regulate multiple Ca(2+)-dependent processes in neurons, with particular impact on reducing age-related changes associated with Ca(2+) dysregulation. Thus, these results may have therapeutic implications and suggest that 1,25VitD, often taken to maintain bone health, may also retard some consequences of brain aging.


Subject(s)
Aging/physiology , Calcitriol/pharmacology , Calcium Channels, L-Type/metabolism , Hippocampus/physiology , Animals , Biomarkers , Calcitriol/administration & dosage , Calcium/blood , Electric Conductivity , Hippocampus/cytology , Male , Membrane Potentials , Neurons/drug effects , Neurons/physiology , Patch-Clamp Techniques , Rats , Rats, Inbred F344
19.
J Neurosci ; 25(18): 4649-58, 2005 May 04.
Article in English | MEDLINE | ID: mdl-15872113

ABSTRACT

Astrocyte reactivity (i.e., activation) and associated neuroinflammation are increasingly thought to contribute to neurodegenerative disease. However, the mechanisms that trigger astrocyte activation are poorly understood. Here, we studied the Ca2+-dependent phosphatase calcineurin, which regulates inflammatory signaling pathways in immune cells, for a role in astrogliosis and brain neuroinflammation. Adenoviral transfer of activated calcineurin to primary rat hippocampal cultures resulted in pronounced thickening of astrocyte somata and processes compared with uninfected or virus control cultures, closely mimicking the activated hypertrophic phenotype. This effect was blocked by the calcineurin inhibitor cyclosporin A. Parallel microarray studies, validated by extensive statistical analyses, showed that calcineurin overexpression also induced genes and cellular pathways representing most major markers associated with astrocyte activation and recapitulated numerous changes in gene expression found previously in the hippocampus of normally aging rats or in Alzheimer's disease (AD). No genomic or morphologic evidence of apoptosis or damage to neurons was seen, indicating that the calcineurin effect was mediated by direct actions on astrocytes. Moreover, immunocytochemical studies of the hippocampus/neocortex in normal aging and AD model mice revealed intense calcineurin immunostaining that was highly selective for activated astrocytes. Together, these studies show that calcineurin overexpression is sufficient to trigger essentially the full genomic and phenotypic profiles associated with astrocyte activation and that hypertrophic astrocytes in aging and AD models exhibit dramatic upregulation of calcineurin. Thus, the data identify calcineurin upregulation in astrocytes as a novel candidate for an intracellular trigger of astrogliosis, particularly in aging and AD brain.


Subject(s)
Aging/physiology , Alzheimer Disease/metabolism , Astrocytes/metabolism , Calcineurin/physiology , Inflammation/metabolism , Adenoviridae/physiology , Age Factors , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Astrocytes/drug effects , Astrocytes/pathology , Cells, Cultured , Cyclosporine/pharmacology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Fluorescent Antibody Technique/methods , Genetic Vectors/physiology , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry/methods , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microarray Analysis/methods , Presenilin-1 , Rats , Rats, Inbred F344 , Up-Regulation
20.
J Gerontol A Biol Sci Med Sci ; 71(1): 30-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25659889

ABSTRACT

Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP.


Subject(s)
Aging , Brain , Cellular Senescence/physiology , Cognition , Insulin Detemir , Insulin Lispro , Administration, Intranasal , Aging/metabolism , Aging/psychology , Animals , Brain/metabolism , Brain/physiopathology , Cellular Senescence/drug effects , Cognition/drug effects , Cognition/physiology , Cognition Disorders/metabolism , Electrophysiological Phenomena/drug effects , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/metabolism , Insulin Detemir/administration & dosage , Insulin Detemir/metabolism , Insulin Lispro/administration & dosage , Insulin Lispro/metabolism , Insulin Resistance , Memory/drug effects , Rats , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL