Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Cell ; 174(2): 338-349.e20, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29937223

ABSTRACT

Macromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation.


Subject(s)
Cytoplasm/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Diffusion , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/genetics , Nanoparticles/chemistry , Nanoparticles/metabolism , Particle Size , Plasmids/genetics , Plasmids/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rheology , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Tuberous Sclerosis Complex 1 Protein/antagonists & inhibitors , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL