Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Med Chem ; 59(15): 7299-304, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27379833

ABSTRACT

Undecaprenyl pyrophosphate synthase (UppS) is an essential enzyme in bacterial cell wall synthesis. Here we report the discovery of Staphylococcus aureus UppS inhibitors from an Encoded Library Technology screen and demonstrate binding to the hydrophobic substrate site through cocrystallography studies. The use of bacterial strains with regulated uppS expression and inhibitor resistant mutant studies confirmed that the whole cell activity was the result of UppS inhibition, validating UppS as a druggable antibacterial target.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Staphylococcus aureus/drug effects , Alkyl and Aryl Transferases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Staphylococcus aureus/enzymology , Structure-Activity Relationship
2.
ACS Med Chem Lett ; 6(8): 919-24, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26288694

ABSTRACT

As a potential target for obesity, human BCATm was screened against more than 14 billion DNA encoded compounds of distinct scaffolds followed by off-DNA synthesis and activity confirmation. As a consequence, several series of BCATm inhibitors were discovered. One representative compound (R)-3-((1-(5-bromothiophene-2-carbonyl)pyrrolidin-3-yl)oxy)-N-methyl-2'-(methylsulfonamido)-[1,1'-biphenyl]-4-carboxamide (15e) from a novel compound library synthesized via on-DNA Suzuki-Miyaura cross-coupling showed BCATm inhibitory activity with IC50 = 2.0 µM. A protein crystal structure of 15e revealed that it binds to BCATm within the catalytic site adjacent to the PLP cofactor. The identification of this novel inhibitor series plus the establishment of a BCATm protein structure provided a good starting point for future structure-based discovery of BCATm inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL