Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 612(7941): 778-786, 2022 12.
Article in English | MEDLINE | ID: mdl-36517593

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability1-4 patterned by distinct mutational processes5,6, tumour heterogeneity7-9 and intraperitoneal spread7,8,10. Immunotherapies have had limited efficacy in HGSOC11-13, highlighting an unmet need to assess how mutational processes and the anatomical sites of tumour foci determine the immunological states of the tumour microenvironment. Here we carried out an integrative analysis of whole-genome sequencing, single-cell RNA sequencing, digital histopathology and multiplexed immunofluorescence of 160 tumour sites from 42 treatment-naive patients with HGSOC. Homologous recombination-deficient HRD-Dup (BRCA1 mutant-like) and HRD-Del (BRCA2 mutant-like) tumours harboured inflammatory signalling and ongoing immunoediting, reflected in loss of HLA diversity and tumour infiltration with highly differentiated dysfunctional CD8+ T cells. By contrast, foldback-inversion-bearing tumours exhibited elevated immunosuppressive TGFß signalling and immune exclusion, with predominantly naive/stem-like and memory T cells. Phenotypic state associations were specific to anatomical sites, highlighting compositional, topological and functional differences between adnexal tumours and distal peritoneal foci. Our findings implicate anatomical sites and mutational processes as determinants of evolutionary phenotypic divergence and immune resistance mechanisms in HGSOC. Our study provides a multi-omic cellular phenotype data substrate from which to develop and interpret future personalized immunotherapeutic approaches and early detection research.


Subject(s)
Immune Evasion , Mutation , Ovarian Neoplasms , Female , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/immunology , Cystadenocarcinoma, Serous/pathology , Homologous Recombination , Immune Evasion/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Tumor Microenvironment , Transforming Growth Factor beta , Genes, BRCA1 , Genes, BRCA2
2.
Nature ; 565(7741): 654-658, 2019 01.
Article in English | MEDLINE | ID: mdl-30675060

ABSTRACT

Diffuse gliomas are the most common malignant brain tumours in adults and include glioblastomas and World Health Organization (WHO) grade II and grade III tumours (sometimes referred to as lower-grade gliomas). Genetic tumour profiling is used to classify disease and guide therapy1,2, but involves brain surgery for tissue collection; repeated tumour biopsies may be necessary for accurate genotyping over the course of the disease3-10. While the detection of circulating tumour DNA (ctDNA) in the blood of patients with primary brain tumours remains challenging11,12, sequencing of ctDNA from the cerebrospinal fluid (CSF) may provide an alternative way to genotype gliomas with lower morbidity and cost13,14. We therefore evaluated the representation of the glioma genome in CSF from 85 patients with gliomas who underwent a lumbar puncture because they showed neurological signs or symptoms. Here we show that tumour-derived DNA was detected in CSF from 42 out of 85 patients (49.4%) and was associated with disease burden and adverse outcome. The genomic landscape of glioma in the CSF included a broad spectrum of genetic alterations and closely resembled the genomes of tumour biopsies. Alterations that occur early during tumorigenesis, such as co-deletion of chromosome arms 1p and 19q (1p/19q codeletion) and mutations in the metabolic genes isocitrate dehydrogenase 1 (IDH1) or IDH21,2, were shared in all matched ctDNA-positive CSF-tumour pairs, whereas growth factor receptor signalling pathways showed considerable evolution. The ability to monitor the evolution of the glioma genome through a minimally invasive technique could advance the clinical development and use of genotype-directed therapies for glioma, one of the most aggressive human cancers.


Subject(s)
Evolution, Molecular , Glioma/cerebrospinal fluid , Glioma/genetics , Liquid Biopsy , Mutation , Genes, Neoplasm/genetics , Genome, Human/genetics , Genomics , Glioblastoma/cerebrospinal fluid , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/pathology , Humans , Neoplasm Grading
3.
Clin Cancer Res ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949890

ABSTRACT

PURPOSE: Classic Hodgkin lymphoma (cHL) is a B cell lymphoma that occurs primarily in young adults and, less frequently, in elderly individuals. A hallmark of cHL is the exceptional scarcity (1-5%) of the malignant Hodgkin Reed-Sternberg (HRS) cells within a network of non-malignant immune cells. Molecular determinants governing the relationship between HRS cells and their proximal microenvironment remain largely unknown. EXPERIMENTAL DESIGN: We performed spatially resolved multiplexed protein imaging and transcriptomic sequencing to characterize HRS cell states, cellular neighborhoods, and gene expression signatures of 23.6 million cells from 36 newly diagnosed Epstein-Barr virus (EBV) positive and EBV-negative cHL tumors. RESULTS: We show that MHC-I expression on HRS cells is associated with immune inflamed neighborhoods containing CD8+ T cells, MHC-II+ macrophages, and immune checkpoint expression (i.e., PD-1 and VISTA). We identified spatial clustering of HRS cells, consistent with the syncytial variant of cHL, and its association with T cell excluded neighborhoods in a subset of EBV-negative tumors. Finally, a subset of both EBV-positive and EBV-negative tumors contained regulatory T cells high neighborhoods harboring HRS cells with augmented proliferative capacity. CONCLUSIONS: Our study links HRS cell properties with distinct immunophenotypes and potential immune escape mechanisms in cHL.

4.
Cancer Discov ; 13(4): 824-828, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37009699

ABSTRACT

The shift in cancer therapy from broadly cytotoxic agents toward "personalized" treatments that target specific alterations in each patient's tumor requires diagnostic pathology approaches that are quantitative and biospecimen-friendly. Novel multiplexed antibody-based imaging technologies can measure single-cell expression of over 60 proteins in intact tumor sections and hold promise for clinical oncology.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Medical Oncology , Proteins
5.
Cancer Immunol Res ; 10(3): 303-313, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35013003

ABSTRACT

Cancer immunotherapy can result in lasting tumor regression, but predictive biomarkers of treatment response remain ill-defined. Here, we performed single-cell proteomics, transcriptomics, and genomics on matched untreated and IL2 injected metastases from patients with melanoma. Lesions that completely regressed following intralesional IL2 harbored increased fractions and densities of nonproliferating CD8+ T cells lacking expression of PD-1, LAG-3, and TIM-3 (PD-1-LAG-3-TIM-3-). Untreated lesions from patients who subsequently responded with complete eradication of all tumor cells in all injected lesions (individuals referred to herein as "extreme responders") were characterized by proliferating CD8+ T cells with an exhausted phenotype (PD-1+LAG-3+TIM-3+), stromal B-cell aggregates, and expression of IFNγ and IL2 response genes. Loss of membranous MHC class I expression in tumor cells of untreated lesions was associated with resistance to IL2 therapy. We validated this finding in an independent cohort of metastatic melanoma patients treated with intralesional or systemic IL2. Our study suggests that intact tumor-cell antigen presentation is required for melanoma response to IL2 and describes a multidimensional and spatial approach to develop immuno-oncology biomarker hypotheses using routinely collected clinical biospecimens.


Subject(s)
Interleukin-2 , Melanoma , Hepatitis A Virus Cellular Receptor 2 , Humans , Immunotherapy/methods , Interleukin-2/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Programmed Cell Death 1 Receptor/metabolism
6.
Oncotarget ; 10(58): 6152-6167, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31692889

ABSTRACT

Extramammary Paget disease (EMPD) is a rare cutaneous adenocarcinoma of the anogenital region most commonly treated with surgical excision. Surgical margin clearance is often problematic and recurrence rates remain high indicating the need for additional therapeutic options. Topical immunomodulators have been used with reported success suggesting EMPD may respond to other immunotherapies. This study investigates EMPD protein expression of targetable B7 family members and cancer/testis antigens (CTAs) B7-H3, B7-H4, PD-L1, PD-L2, MAGE-A, and NY-ESO-1 and components of antigen presenting machinery B2M and MHC-I. Fifty-seven specimens from 48 patients (31 female and 17 male), representing in situ, invasive, and metastatic disease of primary and secondary origin were stained and scored (627 total slides). The percentage of cases expressing each immune regulatory molecule in the in situ followed by invasive tumor components was: B7-H3 (94, 90), B7-H4 (82, 78), PD-L1 (6, 10), MAGE-A (39, 50), NY-ESO-1 (16, 20), B2M (100, 89), and MHC-I (78, 79). PD-L2 was negative in all cases. There was high correlation between marker expression within the in situ and invasive tumor components of the same case. B7-H4 was preferentially expressed in primary cutaneous EMPD. Co-expression of B7 family members B7-H3 and B7-H4 was found within the in situ and invasive tumor components of 74% and 48% of cases, respectively. These findings provide an initial characterization of EMPD tumor cell expression of B7-H3, B7-H4, PD-L1, PD-L2, MAGE-A, and NY-ESO-1 and indicate the potential for new immunotherapeutic options for patients with EMPD.

7.
Clin Cancer Res ; 25(18): 5537-5547, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31263031

ABSTRACT

PURPOSE: The genomic landscape of gliomas has been characterized and now contributes to disease classification, yet the relationship between molecular profile and disease progression and treatment response remain poorly understood.Experimental Design: We integrated prospective clinical sequencing of 1,004 primary and recurrent tumors from 923 glioma patients with clinical and treatment phenotypes. RESULTS: Thirteen percent of glioma patients harbored a pathogenic germline variant, including a subset associated with heritable genetic syndromes and variants mediating DNA repair dysfunctions (29% of the total) that were associated with somatic biallelic inactivation and mechanism-specific somatic phenotypes. In astrocytomas, genomic alterations in effectors of cell-cycle progression correlated with aggressive disease independent of IDH mutation status, arose preferentially in enhancing tumors (44% vs. 8%, P < 0.001), were associated with rapid disease progression following tumor recurrence (HR = 2.6, P = 0.02), and likely preceded the acquisition of alkylating therapy-associated somatic hypermutation. Thirty-two percent of patients harbored a potentially therapeutically actionable lesion, of whom 11% received targeted therapies. In BRAF-mutant gliomas, response to agents targeting the RAF/MEK/ERK signaling axis was influenced by the type of mutation, its clonality, and its cellular and genomic context. CONCLUSIONS: These data reveal genomic correlates of disease progression and treatment response in diverse types of glioma and highlight the potential utility of incorporating genomic information into the clinical decision-making for patients with glioma.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Genetic Variation , Genomics , Glioma/genetics , Glioma/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Child , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Disease Progression , Female , Genomics/methods , Germ-Line Mutation , Glioma/diagnostic imaging , Glioma/therapy , High-Throughput Nucleotide Sequencing , Humans , Image Enhancement , Kaplan-Meier Estimate , Magnetic Resonance Imaging , Male , Middle Aged , Models, Biological , Mutation , Precision Medicine/methods , Prognosis , Promoter Regions, Genetic , Treatment Outcome , Tumor Suppressor Proteins/genetics , Young Adult
8.
Nat Commun ; 8(1): 2035, 2017 12 11.
Article in English | MEDLINE | ID: mdl-29229958

ABSTRACT

Transport of macromolecules through the nuclear pore by importins and exportins plays a critical role in the spatial regulation of protein activity. How cancer cells co-opt this process to promote tumorigenesis remains unclear. The epidermal growth factor receptor (EGFR) plays a critical role in normal development and in human cancer. Here we describe a mechanism of EGFR regulation through the importin ß family member RAN-binding protein 6 (RanBP6), a protein of hitherto unknown functions. We show that RanBP6 silencing impairs nuclear translocation of signal transducer and activator of transcription 3 (STAT3), reduces STAT3 binding to the EGFR promoter, results in transcriptional derepression of EGFR, and increased EGFR pathway output. Focal deletions of the RanBP6 locus on chromosome 9p were found in a subset of glioblastoma (GBM) and silencing of RanBP6 promoted glioma growth in vivo. Our results provide an example of EGFR deregulation in cancer through silencing of components of the nuclear import pathway.


Subject(s)
ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Glioma/genetics , beta Karyopherins/genetics , ran GTP-Binding Protein/genetics , Active Transport, Cell Nucleus/genetics , Animals , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Cells, Cultured , Doxorubicin/pharmacology , ErbB Receptors/metabolism , Feedback, Physiological , Female , Gene Knockdown Techniques , Glioma/drug therapy , Glioma/metabolism , HEK293 Cells , Humans , Mice, Knockout , Mice, SCID , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays , beta Karyopherins/metabolism , ran GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL