Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioconjug Chem ; 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36972480

ABSTRACT

Targeted delivery of therapeutics using antibody-nanogel conjugates (ANCs) with a high drug-to-antibody ratio has the potential to overcome some of the inherent limitations of antibody-drug conjugates (ADCs). ANC platforms with simple preparation methods and precise tunability to evaluate structure-activity relationships will greatly contribute to translating this promise into clinical reality. In this work, using trastuzumab as a model antibody, we demonstrate a block copolymer-based ANC platform that allows highly efficient antibody conjugation and formulation. In addition to showcasing the advantages of using an inverse electron-demand Diels-Alder (iEDDA)-based antibody conjugation, we evaluate the influence of antibody surface density and conjugation site on the nanogels upon the targeting capability of ANCs. We show that compared to traditional strain-promoted alkyne-azide cycloadditions, the preparation of ANCs using iEDDA provides significantly higher efficiency, which results in a shortened reaction time, simplified purification process, and enhanced targeting toward cancer cells. We also find that a site-specific disulfide-rebridging method in antibodies offers similar targeting abilities as the more indiscriminate lysine-based conjugation method. The more efficient bioconjugation using iEDDA allows us to optimize the avidity by fine-tuning the surface density of antibodies on the nanogel. Finally, with trastuzumab-mertansine (DM1) antibody-drug combination, our ANC demonstrates superior activities in vitro compared to the corresponding ADC, further highlighting the potential of ANCs in future clinical translation.

2.
Biomacromolecules ; 24(2): 849-857, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36639133

ABSTRACT

Targeted drug delivery using antibody-drug conjugates has attracted great attention due to its enhanced therapeutic efficacy compared to traditional chemotherapy. However, the development has been limited due to a low drug-to-antibody ratio and laborious linker-payload optimization. Herein, we present a simple and efficient strategy to combine the favorable features of polymeric nanocarriers with antibodies to generate an antibody-nanogel conjugate (ANC) platform for targeted delivery of cytotoxic agents. Our nanogels stably encapsulate several chemotherapeutic agents with a wide range of mechanisms of action and solubility. We showcase the targetability of ANCs and their selective killing of cancer cells over-expressing disease-relevant antigens such as human epidermal growth factor receptor 2, epidermal growth factor receptor, and tumor-specific mucin 1, which cover a broad range of breast cancer cell types while maintaining low to no toxicity to non-targeted cells. Overall, our system represents a versatile approach that could impact next-generation nanomedicine in antibody-targeted therapeutics.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Humans , Nanogels , Neoplasms/drug therapy , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Drug Delivery Systems , Cell Line, Tumor
3.
PNAS Nexus ; 2(8): pgad252, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37649581

ABSTRACT

Optimization of metabolic regulation is a promising solution for many pathologies, including obesity, dyslipidemia, type 2 diabetes, and inflammatory liver disease. Synthetic thyroid hormone mimics-based regulation of metabolic balance in the liver showed promise but was hampered by the low biocompatibility and harmful effects on the extrahepatic axis. In this work, we show that specifically directing the thyromimetic to the liver utilizing a nanogel-based carrier substantially increased therapeutic efficacy in a diet-induced obesity mouse model, evidenced by the near-complete reversal of body weight gain, liver weight and inflammation, and cholesterol levels with no alteration in the thyroxine (T4) / thyroid stimulating hormone (TSH) axis. Mechanistically, the drug acts by binding to thyroid hormone receptor ß (TRß), a ligand-inducible transcription factor that interacts with thyroid hormone response elements and modulates target gene expression. The reverse cholesterol transport (RCT) pathway is specifically implicated in the observed therapeutic effect. Overall, the study demonstrates a unique approach to restoring metabolic regulation impacting obesity and related metabolic dysfunctions.

4.
Mater Horiz ; 9(1): 164-193, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34549764

ABSTRACT

Thermoresponsive supramolecular assemblies have been extensively explored in diverse formats, from injectable hydrogels to nanoscale carriers, for a variety of applications including drug delivery, tissue engineering and thermo-controlled catalysis. Understanding the molecular bases behind thermal sensitivity of materials is fundamentally important for the rational design of assemblies with optimal combination of properties and predictable tunability for specific applications. In this review, we summarize the recent advances in this area with a specific focus on the parameters and factors that influence thermoresponsive properties of soft materials. We summarize and analyze the effects of structures and architectures of molecules, hydrophilic and lipophilic balance, concentration, components and external additives upon the thermoresponsiveness of the corresponding molecular assemblies.


Subject(s)
Drug Delivery Systems , Hydrogels , Hydrogels/chemistry , Hydrophobic and Hydrophilic Interactions , Temperature , Tissue Engineering
5.
Chem Commun (Camb) ; 57(95): 12828-12831, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34787137

ABSTRACT

Protein sensing strategies have implications in detection of many human pathologies. Here, a supramolecular strategy for sensing two different proteins using a multichannel readout approach is outlined. Protein-ligand binding or enzymatic cleavage can both be programmed to induce supramolecular disassembly, which leads to fluorescence enhancement via aggregation-induced emission (AIE), protein-induced fluorescence enhancement (PIFE), or disassembly-induced fluorescence enhancement (DIFE). The accompanying signal change from two different fluorophores and their patterns are then used for specific protein sensing.


Subject(s)
Proteins/analysis , Surface-Active Agents/chemistry , Humans , Macromolecular Substances/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL