Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Proc Natl Acad Sci U S A ; 120(49): e2308671120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38015848

ABSTRACT

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission. Thus, learning-induced dephosphorylation of eIF2α in astrocytes bolsters hippocampal synaptic plasticity and consolidation of long-term memories.


Subject(s)
Astrocytes , Long-Term Potentiation , Long-Term Potentiation/physiology , Neuronal Plasticity/genetics , Hippocampus/physiology , Protein Biosynthesis , CA1 Region, Hippocampal , Memory, Long-Term/physiology
3.
Semin Cell Dev Biol ; 71: 13-21, 2017 11.
Article in English | MEDLINE | ID: mdl-28627381

ABSTRACT

Osmosensory neurons are specialized cells activated by increases in blood osmolality to trigger thirst, secretion of the antidiuretic hormone vasopressin, and elevated sympathetic tone during dehydration. In addition to multiple extrinsic factors modulating their activity, osmosensory neurons are intrinsically osmosensitive, as they are activated by increased osmolality in the absence of neighboring cells or synaptic contacts. This intrinsic osmosensitivity is a mechanical process associated with osmolality-induced changes in cell volume. This review summarises recent findings revealing molecular mechanisms underlying the mechanical activation of osmosensory neurons and highlighting important roles of microtubules, actin, and mechanosensitive ion channels in this process.


Subject(s)
Neurons/physiology , Actins , Animals , Humans , Ion Channels/metabolism , Microtubules/metabolism , Osmotic Pressure
4.
Proc Natl Acad Sci U S A ; 113(42): 11949-11954, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27698114

ABSTRACT

A response to environmental stress is critical to alleviate cellular injury and maintain cellular homeostasis. Eukaryotic initiation factor 2 (eIF2) is a key integrator of cellular stress responses and an important regulator of mRNA translation. Diverse stress signals lead to the phosphorylation of the α subunit of eIF2 (Ser51), resulting in inhibition of global protein synthesis while promoting expression of proteins that mediate cell adaptation to stress. Here we report that eIF2α is instrumental in the control of noxious heat sensation. Mice with decreased eIF2α phosphorylation (eIF2α+/S51A) exhibit reduced responses to noxious heat. Pharmacological attenuation of eIF2α phosphorylation decreases thermal, but not mechanical, pain sensitivity, whereas increasing eIF2α phosphorylation has the opposite effect on thermal nociception. The impact of eIF2α phosphorylation (p-eIF2α) on thermal thresholds is dependent on the transient receptor potential vanilloid 1. Moreover, we show that induction of eIF2α phosphorylation in primary sensory neurons in a chronic inflammation pain model contributes to thermal hypersensitivity. Our results demonstrate that the cellular stress response pathway, mediated via p-eIF2α, represents a mechanism that could be used to alleviate pathological heat sensation.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Nociception , Temperature , Animals , Behavior, Animal , Biomarkers , Calcium/metabolism , Cells, Cultured , Eukaryotic Initiation Factor-2/genetics , Ganglia, Spinal/metabolism , Immunohistochemistry , Mice , Mice, Knockout , Mice, Transgenic , Molecular Imaging , Neurons/metabolism , Pain/etiology , Pain/metabolism , Pain Threshold , Phosphorylation , Signal Transduction , Spinal Cord/metabolism , Stress, Physiological , TRPV Cation Channels/metabolism , eIF-2 Kinase/metabolism
5.
Curr Hypertens Rep ; 19(5): 42, 2017 May.
Article in English | MEDLINE | ID: mdl-28451854

ABSTRACT

PURPOSE OF REVIEW: Dietary salt intake increases both plasma sodium and osmolality and therefore increases vasopressin (VP) release from the neurohypophysis. Although this effect could increase blood pressure by inducing fluid reabsorption and vasoconstriction, acute activation of arterial baroreceptors inhibits VP neurons via GABAA receptors to oppose high blood pressure. Here we review recent findings demonstrating that this protective mechanism fails during chronic high salt intake in rats. RECENT FINDINGS: Two recent studies showed that chronic high sodium intake causes an increase in intracellular chloride concentration in VP neurons. This effect causes GABAA receptors to become excitatory and leads to the emergence of VP-dependent hypertension. One study showed that the increase in intracellular chloride was provoked by a decrease in the expression of the chloride exporter KCC2 mediated by local secretion of brain-derived neurotrophic factor and activation of TrkB receptors. Prolonged high dietary salt intake can cause pathological plasticity in a central homeostatic circuit that controls VP secretion and thereby contribute to peripheral vasoconstriction and hypertension.


Subject(s)
Blood Pressure/drug effects , Hypertension/physiopathology , Sodium Chloride, Dietary/pharmacology , Vasopressins/metabolism , Animals , Blood Pressure/physiology , Humans , Hypertension/metabolism , Male , Osmolar Concentration , Pressoreceptors/physiopathology , Rats , Sodium Chloride/blood , Vasopressins/blood
6.
J Neurosci ; 35(35): 12188-97, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26338329

ABSTRACT

Sepsis is a life-threatening condition caused by the systemic inflammatory response to a bacterial infection. Although much is known about the cellular and molecular changes that characterize the peripheral inflammatory response to sepsis, almost nothing is known of the neuronal changes that cause associated perturbations in the central control of homeostasis. Osmoregulation is one of the key homeostatic systems perturbed during sepsis. In healthy subjects, systemic hypertonicity normally excites osmoreceptor neurons in the organum vasculosum laminae terminalis (OVLT), which then activates downstream neurons that induce a parallel increase in water intake and arginine vasopressin (AVP) secretion to promote fluid expansion and maintain blood pressure. However, recent studies have shown that the early phase of sepsis is associated with increased AVP levels and suppressed thirst. Here we examined the electrophysiological properties of OVLT neurons and magnocellular neurosecretory cells (MNCs) in acute in vitro preparations obtained from rats subjected to sham surgery or cecal ligation and puncture (CLP). We found that the intrinsic excitability of OVLT neurons was not affected significantly 18-24 h after CLP. However, OVLT neurons in CLP rats were hyperpolarized significantly compared with shams. Moreover, a reduced proportion of these cells displayed spontaneous electrical activity and osmoresponsiveness in septic animals. In contrast, the osmoresponsiveness of MNCs was only attenuated by CLP, and a larger proportion of these neurons displayed spontaneous electrical activity in septic animals. These results suggest that acute sepsis disrupts centrally mediated osmoregulatory reflexes through differential effects on the properties of neurons in the OVLT and supraoptic nucleus. SIGNIFICANCE STATEMENT: Sepsis is a life-threatening condition caused by the systemic inflammatory response to bacterial infection. Although the early phase of sepsis features impaired thirst and enhanced vasopressin release, the basis for these defects is unknown. Here, we show that cecal ligation and puncture (CLP) in rats impairs the osmoresponsiveness of neurons in the organum vasculosum lamina terminalis (OVLT; which drives thirst) and attenuates that of neurosecretory neurons in the supraoptic nucleus (SON; which secrete oxytocin and vasopressin). Notably, we found that OVLT neurons are hyperpolarized and electrically silenced. In contrast, CLP increased the proportion of SON neurons displaying spontaneous electrical activity. Therefore, CLP affects the properties of osmoregulatory neurons in a manner that can affect systemic osmoregulation.


Subject(s)
Neurons/physiology , Organum Vasculosum/pathology , Osmoregulation/physiology , Sepsis/pathology , Thirst/physiology , Vasopressins/metabolism , Action Potentials/physiology , Animals , Disease Models, Animal , Drinking Behavior/physiology , Male , Patch-Clamp Techniques , Rats , Rats, Long-Evans , Water-Electrolyte Balance
7.
Am J Physiol Regul Integr Comp Physiol ; 309(4): R324-37, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26017494

ABSTRACT

The organum vasculosum of the laminae terminalis (OVLT) is a circumventricular organ located along the ventral part of the anterior wall of the third ventricle. Because it lacks a complete blood-brain barrier (BBB), blood-borne signals detected in the OVLT provide the brain with information from the periphery and contribute to the generation of centrally mediated responses to humoral feedback and physiological stressors. Experimental studies on the rat OVLT are hindered by a poor understanding of its precise anatomical dimensions and cellular organization. In this study, we use histological techniques to characterize the spatial outline of the rat OVLT and to examine the location of neurons, astrocytes, tanycytes, and ependymocytes within its confines. Our data reveal that OVLT neurons are embedded in a dense network of tanycyte processes. Immunostaining against the neuronal marker NeuN revealed that neurons are distributed throughout the OVLT, except for a thick midline septum, which comprises densely packed cells of unknown function or lineage. Moreover, the most ventral aspect of the OVLT is devoid of neurons and is occupied by a dense network of glial cell processes that form a thick layer between the neurons and the pial surface on the ventral aspect of the nucleus. Lastly, combined detection of NeuN and c-Fos protein following systemic injection of hypertonic NaCl revealed that neurons responsive to this stimulus are located along the entire midline core of the OVLT, extending from its most anterior ventral aspect to the more caudally located "dorsal cap" region.


Subject(s)
Neuroglia/cytology , Neurons/cytology , Organum Vasculosum/cytology , Animals , Antigens, Nuclear/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Biomarkers/metabolism , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Immunohistochemistry , Injections, Subcutaneous , Male , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Organum Vasculosum/drug effects , Organum Vasculosum/metabolism , Osmoregulation , Proto-Oncogene Proteins c-fos/metabolism , Rats, Long-Evans , Saline Solution, Hypertonic/administration & dosage
8.
J Neuroendocrinol ; 36(4): e13377, 2024 04.
Article in English | MEDLINE | ID: mdl-38418229

ABSTRACT

Neurogenesis continues throughout adulthood in the subventricular zone, hippocampal subgranular zone, and the hypothalamic median eminence (ME) and the adjacent medio-basal hypothalamus. The ME is one of the circumventricular organs (CVO), which are specialized brain areas characterized by an incomplete blood-brain barrier and, thus, are involved in mediating communication between the central nervous system and the periphery. Additional CVOs include the organum vasculosum laminae terminalis (OVLT) and the subfornical organs (SFO). Previous studies have demonstrated that the ME contains neural stem cells (NSCs) capable of generating new neurons and glia in the adult brain. However, it remains unclear whether the OVLT and SFO also contain proliferating cells, the identity of these cells, and their ability to differentiate into mature neurons. Here we show that glial and mural subtypes exhibit NSC characteristics, expressing the endogenous mitotic maker Ki67, and incorporating the exogenous mitotic marker BrdU in the OVLT and SFO of adult rats. Glial cells constitutively proliferating in the SFO comprise NG2 glia, while in the OVLT, both NG2 glia and tanycytes appear to constitute the NSC pool. Furthermore, pericytes, which are mural cells associated with capillaries, also contribute to the pool of cells constitutively proliferating in the OVLT and SFO of adult rats. In addition to these glial and mural cells, a fraction of NSCs containing proliferation markers Ki67 and BrdU also expresses the early postmitotic neuronal marker doublecortin, suggesting that these CVOs comprise newborn neurons. Notably, these neurons can differentiate and express the mature neuronal marker NeuN. These findings establish the sensory CVOs OVLT and SFO as additional neurogenic niches, where the generation of new neurons and glia persists in the adult brain.


Subject(s)
Organum Vasculosum , Subfornical Organ , Rats , Animals , Bromodeoxyuridine , Ki-67 Antigen , Hypothalamus , Neurogenesis/physiology , Cell Proliferation
9.
Curr Biol ; 33(20): 4343-4352.e4, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37725978

ABSTRACT

Short sleep is linked to disturbances in glucose metabolism and may induce a prediabetic condition. The biological clock in the suprachiasmatic nucleus (SCN) regulates the glucose rhythm in the circulation and the sleep-wake cycle. SCN vasopressin neurons (SCNVP) control daily glycemia by regulating the entrance of glucose into the arcuate nucleus (ARC). Thus, we hypothesized that sleep delay may influence SCN neuronal activity. We, therefore, investigated the role of SCNVP when sleep is disrupted by forced locomotor activity. After 2 h of sleep delay, rats exhibited decreased SCNVP neuronal activity, a decrease in the glucose transporter GLUT1 expression in tanycytes lining the third ventricle, lowered glucose entrance into the ARC, and developed hyperglycemia. The association between reduced SCNVP neuronal activity and hyperglycemia in sleep-delayed rats was evidenced by injecting intracerebroventricular vasopressin; this increased GLUT1 immunoreactivity in tanycytes, thus promoting normoglycemia. Following sleep recovery, glucose levels decreased, whereas SCNVP neuronal activity increased. These results imply that sleep-delay-induced changes in SCNVP activity lead to glycemic impairment, inferring that disruption of biological clock function might represent a critical step in developing type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Rats , Animals , Glucose Transporter Type 1/metabolism , Circadian Rhythm/physiology , Diabetes Mellitus, Type 2/metabolism , Suprachiasmatic Nucleus/physiology , Sleep , Glucose/metabolism , Hyperglycemia/metabolism , Vasopressins/metabolism
10.
J Clin Invest ; 133(2)2023 01 17.
Article in English | MEDLINE | ID: mdl-36394958

ABSTRACT

Repeated or prolonged, but not short-term, general anesthesia during the early postnatal period causes long-lasting impairments in memory formation in various species. The mechanisms underlying long-lasting impairment in cognitive function are poorly understood. Here, we show that repeated general anesthesia in postnatal mice induces preferential apoptosis and subsequent loss of parvalbumin-positive inhibitory interneurons in the hippocampus. Each parvalbumin interneuron controls the activity of multiple pyramidal excitatory neurons, thereby regulating neuronal circuits and memory consolidation. Preventing the loss of parvalbumin neurons by deleting a proapoptotic protein, mitochondrial anchored protein ligase (MAPL), selectively in parvalbumin neurons rescued anesthesia-induced deficits in pyramidal cell inhibition and hippocampus-dependent long-term memory. Conversely, partial depletion of parvalbumin neurons in neonates was sufficient to engender long-lasting memory impairment. Thus, loss of parvalbumin interneurons in postnatal mice following repeated general anesthesia critically contributes to memory deficits in adulthood.


Subject(s)
Anesthesia , Parvalbumins , Mice , Animals , Parvalbumins/genetics , Parvalbumins/metabolism , Interneurons/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Hippocampus/metabolism , Memory Disorders/chemically induced , Memory Disorders/genetics , Memory Disorders/metabolism
11.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37473758

ABSTRACT

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Animals , Mice , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Mental Retardation Protein/genetics , Neurons/metabolism , Phenotype , Mice, Knockout , Disease Models, Animal
12.
J Cell Biol ; 176(4): 497-507, 2007 Feb 12.
Article in English | MEDLINE | ID: mdl-17283182

ABSTRACT

Transformation of a transected axonal tip into a growth cone (GC) is a critical step in the cascade leading to neuronal regeneration. Critical to the regrowth is the supply and concentration of vesicles at restricted sites along the cut axon. The mechanisms underlying these processes are largely unknown. Using online confocal imaging of transected, cultured Aplysia californica neurons, we report that axotomy leads to reorientation of the microtubule (MT) polarities and formation of two distinct MT-based vesicle traps at the cut axonal end. Approximately 100 microm proximal to the cut end, a selective trap for anterogradely transported vesicles is formed, which is the plus end trap. Distally, a minus end trap is formed that exclusively captures retrogradely transported vesicles. The concentration of anterogradely transported vesicles in the former trap optimizes the formation of a GC after axotomy.


Subject(s)
Aplysia/metabolism , Growth Cones/metabolism , Microtubules/metabolism , Nerve Regeneration/physiology , Nervous System/metabolism , Transport Vesicles/metabolism , Animals , Aplysia/ultrastructure , Axonal Transport/physiology , Axotomy , Cell Polarity/physiology , Cells, Cultured , Denervation , Growth Cones/ultrastructure , Microtubules/ultrastructure , Nervous System/ultrastructure , Transport Vesicles/ultrastructure
13.
Methods Mol Biol ; 2515: 171-191, 2022.
Article in English | MEDLINE | ID: mdl-35776352

ABSTRACT

Emerging evidence suggests that neurodegeneration is directly linked to dysfunction of cytoskeleton; however, visualizing the organization of cytoskeletal structures in brain tissues remains challenging due to the limitation of resolution of light microscopy. Superresolution imaging overcomes this limitation and resolves subcellular structures below the diffraction barrier of light (20-200 nm), while retaining the advantages of fluorescent microscopy such as simultaneous visualization of multiple proteins and increased signal sensitivity and contrast. However, superresolution imaging approaches have been largely limited to very thin samples such as cultured cells growing as a single monolayer. Analysis of thicker tissue sections represents a technical challenge due to high background fluorescence and quality of the tissue preservation methods. Among superresolution microscopy approaches, structured illumination microscopy is one of the most compatible methods for analyzing thicker native tissue samples. We have developed a methodology that allows maximal preservation and quantitative analyses of cytoskeletal networks in tissue sections from a rodent brain. This methodology includes a specialized fixation protocol, tissue preparation, and image acquisition procedures optimized for the characterization of subcellular cytoskeletal structures using superresolution with structured illumination microscopy.


Subject(s)
Brain , Microtubules , Microscopy, Fluorescence/methods , Proteins
14.
Curr Biol ; 32(4): 796-805.e4, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35030330

ABSTRACT

Glycemia is maintained within very narrow boundaries with less than 5% variation at a given time of the day. However, over the circadian cycle, glycemia changes with almost 50% difference. How the suprachiasmatic nucleus, the biological clock, maintains these day-night variations with such tiny disparities remains obscure. We show that via vasopressin release at the beginning of the sleep phase, the suprachiasmatic nucleus increases the glucose transporter GLUT1 in tanycytes. Hereby GLUT1 promotes glucose entrance into the arcuate nucleus, thereby lowering peripheral glycemia. Conversely, blocking vasopressin activity or the GLUT1 transporter at the daily trough of glycemia increases circulating glucose levels usually seen at the peak of the rhythm. Thus, biological clock-controlled mechanisms promoting glucose entry into the arcuate nucleus explain why peripheral blood glucose is low before sleep onset.


Subject(s)
Arcuate Nucleus of Hypothalamus , Glucose , Blood Glucose , Circadian Rhythm , Glucose Transporter Type 1 , Suprachiasmatic Nucleus , Vasopressins
15.
J Clin Invest ; 132(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35579957

ABSTRACT

The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability and thus to the development of inflammatory pain. Here, we showed that tissue inflammation-induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain. Pharmacological activation of mTORC2 induced elongation and branching of nociceptor peripheral endings and caused long-lasting pain hypersensitivity. Conversely, nociceptor-specific deletion of the mTORC2 regulatory protein rapamycin-insensitive companion of mTOR (Rictor) prevented inflammation-induced elongation and branching of cutaneous nociceptive fibers and attenuated inflammatory pain hypersensitivity. Computational modeling demonstrated that mTORC2-mediated structural changes in the nociceptive terminal tree are sufficient to increase the excitability of nociceptors. Targeting mTORC2 using a single injection of antisense oligonucleotide against Rictor provided long-lasting alleviation of inflammatory pain hypersensitivity. Collectively, we showed that tissue inflammation-induced activation of mTORC2 causes structural plasticity of nociceptive free nerve endings in the epidermis and inflammatory hyperalgesia, representing a therapeutic target for inflammatory pain.


Subject(s)
Chronic Pain , Nociceptors , Humans , Hyperalgesia/genetics , Hyperalgesia/metabolism , Inflammation/chemically induced , Inflammation/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Nociceptors/physiology , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Sirolimus
16.
Science ; 377(6601): 80-86, 2022 07.
Article in English | MEDLINE | ID: mdl-35617374

ABSTRACT

Activation of microglia in the spinal cord dorsal horn after peripheral nerve injury contributes to the development of pain hypersensitivity. How activated microglia selectively enhance the activity of spinal nociceptive circuits is not well understood. We discovered that after peripheral nerve injury, microglia degrade extracellular matrix structures, perineuronal nets (PNNs), in lamina I of the spinal cord dorsal horn. Lamina I PNNs selectively enwrap spinoparabrachial projection neurons, which integrate nociceptive information in the spinal cord and convey it to supraspinal brain regions to induce pain sensation. Degradation of PNNs by microglia enhances the activity of projection neurons and induces pain-related behaviors. Thus, nerve injury-induced degradation of PNNs is a mechanism by which microglia selectively augment the output of spinal nociceptive circuits and cause pain hypersensitivity.


Subject(s)
Hyperalgesia , Microglia , Pain , Peripheral Nerve Injuries , Spinal Cord Dorsal Horn , Animals , Extracellular Matrix/pathology , Hyperalgesia/etiology , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Microglia/pathology , Pain/pathology , Pain/physiopathology , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn/pathology , Spinal Cord Dorsal Horn/physiopathology
17.
Nat Commun ; 13(1): 843, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149686

ABSTRACT

Activation of microglia in the spinal cord following peripheral nerve injury is critical for the development of long-lasting pain hypersensitivity. However, it remains unclear whether distinct microglia subpopulations or states contribute to different stages of pain development and maintenance. Using single-cell RNA-sequencing, we show that peripheral nerve injury induces the generation of a male-specific inflammatory microglia subtype, and demonstrate increased proliferation of microglia in male as compared to female mice. We also show time- and sex-specific transcriptional changes in different microglial subpopulations following peripheral nerve injury. Apolipoprotein E (Apoe) is the top upregulated gene in spinal cord microglia at chronic time points after peripheral nerve injury in mice. Furthermore, polymorphisms in the APOE gene in humans are associated with chronic pain. Single-cell RNA sequencing analysis of human spinal cord microglia reveals a subpopulation with a disease-related transcriptional signature. Our data provide a detailed analysis of transcriptional states of mouse and human spinal cord microglia, and identify a link between ApoE and chronic pain in humans.


Subject(s)
Apolipoproteins E/genetics , Chronic Pain/genetics , Microglia , Peripheral Nerve Injuries , Sequence Analysis, RNA , Spinal Cord , Animals , Cell Proliferation , Female , Gene Expression , Male , Mice , Mice, Inbred C57BL , Polymorphism, Genetic
18.
Front Cell Neurosci ; 15: 691711, 2021.
Article in English | MEDLINE | ID: mdl-34552469

ABSTRACT

The subfornical organ (SFO) is a sensory circumventricular organ located along the anterodorsal wall of the third ventricle. SFO lacks a complete blood-brain barrier (BBB), and thus peripherally-circulating factors can penetrate the SFO parenchyma. These signals are detected by local neurons providing the brain with information from the periphery to mediate central responses to humoral signals and physiological stressors. Circumventricular organs are characterized by the presence of unique populations of non-neuronal cells, such as tanycytes and fenestrated endothelium. However, how these populations are organized within the SFO is not well understood. In this study, we used histological techniques to analyze the anatomical organization of the rat SFO and examined the distribution of neurons, fenestrated and non-fenestrated vasculature, tanycytes, ependymocytes, glia cells, and pericytes within its confines. Our data show that the shell of SFO contains non-fenestrated vasculature, while fenestrated capillaries are restricted to the medial-posterior core region of the SFO and associated with a higher BBB permeability. In contrast to non-fenestrated vessels, fenestrated capillaries are encased in a scaffold created by pericytes and embedded in a network of tanycytic processes. Analysis of c-Fos expression following systemic injections of angiotensin II or hypertonic NaCl reveals distinct neuronal populations responding to these stimuli. Hypertonic NaCl activates ∼13% of SFO neurons located in the shell. Angiotensin II-sensitive neurons represent ∼35% of SFO neurons and their location varies between sexes. Our study provides a comprehensive description of the organization of diverse cellular elements within the SFO, facilitating future investigations in this important brain area.

19.
Cell Rep ; 34(11): 108866, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730577

ABSTRACT

High dietary salt increases arterial pressure partly through activation of magnocellular neurosecretory cells (MNCVP) that secrete the antidiuretic and vasoconstrictor hormone vasopressin (VP) into the circulation. Here, we show that the intrinsic and synaptic excitation of MNCVP caused by hypertonicity are differentially potentiated in two models of salt-dependent hypertension in rats. One model combined salty chow with a chronic subpressor dose of angiotensin II (AngII-salt), the other involved replacing drinking water with 2% NaCl (salt loading, SL). In both models, we observed a significant increase in the quantal amplitude of EPSCs on MNCVP. However, model-specific changes were also observed. AngII-salt increased the probability of glutamate release by osmoreceptor afferents and increased overall excitatory network drive. In contrast, SL specifically increased membrane stiffness and the intrinsic osmosensitivity of MNCVP. These results reveal that dietary salt increases the excitability of MNCVP through effects on the cell-autonomous and synaptic osmoresponsiveness of MNCVP.


Subject(s)
Neurons/metabolism , Osmosis , Sodium Chloride, Dietary/adverse effects , Vasopressins/metabolism , Angiotensin II , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Disease Models, Animal , Excitatory Postsynaptic Potentials/drug effects , Hypertension/pathology , Male , Mechanotransduction, Cellular/drug effects , Neurons/drug effects , Probability , Rats, Wistar , Synapses/drug effects , Synapses/metabolism
20.
Sci Rep ; 11(1): 15490, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326413

ABSTRACT

Long-lasting cognitive impairment in juveniles undergoing repeated general anesthesia has been observed in numerous preclinical and clinical studies, yet, the underlying mechanisms remain unknown and no preventive treatment is available. We found that daily intranasal insulin administration to juvenile mice for 7 days prior to repeated isoflurane anesthesia rescues deficits in hippocampus-dependent memory and synaptic plasticity in adulthood. Moreover, intranasal insulin prevented anesthesia-induced apoptosis of hippocampal cells, which is thought to underlie cognitive impairment. Inhibition of the mechanistic target of rapamycin complex 1 (mTORC1), a major intracellular effector of insulin receptor, blocked the beneficial effects of intranasal insulin on anesthesia-induced apoptosis. Consistent with this finding, mice lacking mTORC1 downstream translational repressor 4E-BP2 showed no induction of repeated anesthesia-induced apoptosis. Our study demonstrates that intranasal insulin prevents general anesthesia-induced apoptosis of hippocampal cells, and deficits in synaptic plasticity and memory, and suggests that the rescue effect is mediated via mTORC1/4E-BP2 signaling.


Subject(s)
Anesthesia/adverse effects , Insulin/administration & dosage , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/physiology , Memory/drug effects , Neuronal Plasticity/drug effects , Administration, Intranasal , Animals , Animals, Newborn , Apoptosis/drug effects , Eukaryotic Initiation Factors/metabolism , Fear , Female , Hippocampus , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Neurological , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL