ABSTRACT
The misuse and overuse of antibiotics have contributed to a rapid emergence of antibiotic-resistant bacterial pathogens. This global health threat underlines the urgent need for innovative and novel antimicrobials. Endolysins derived from bacteriophages or prophages constitute promising new antimicrobials (so-called enzybiotics), exhibiting the ability to break down bacterial peptidoglycan (PG). In the present work, metagenomic analysis of soil samples, collected from thermal springs, allowed the identification of a prophage-derived endolysin that belongs to the N-acetylmuramoyl-L-alanine amidase type 2 (NALAA-2) family and possesses a LysM (lysin motif) region as a cell wall binding domain (CWBD). The enzyme (Ami1) was cloned and expressed in Escherichia coli, and its bactericidal and lytic activity was characterized. The results indicate that Ami1 exhibits strong bactericidal and antimicrobial activity against a broad range of bacterial pathogens, as well as against isolated peptidoglycan (PG). Among the examined bacterial pathogens, Ami1 showed highest bactericidal activity against Staphylococcus aureus sand Staphylococcus epidermidis cells. Thermostability analysis revealed a melting temperature of 64.2 ± 0.6 °C. Overall, these findings support the potential that Ami1, as a broad spectrum antimicrobial agent, could be further assessed as enzybiotic for the effective treatment of bacterial infections. KEY POINTS: ⢠Metagenomic analysis allowed the identification of a novel prophage endolysin ⢠The endolysin belongs to type 2 amidase family with lysin motif region ⢠The endolysin displays high thermostability and broad bactericidal spectrum.
Subject(s)
Bacteriophages , Hot Springs , Soil , Peptidoglycan , Anti-Bacterial Agents/pharmacology , Escherichia coli/geneticsABSTRACT
The emergence of multidrug-resistant (MDR) bacteria has risen rapidly, leading to a great threat to global public health. A promising solution to this problem is the exploitation of phage endolysins. In the present study, a putative N-acetylmuramoyl-L-alanine type-2 amidase (NALAA-2, EC 3.5.1.28) from Propionibacterium bacteriophage PAC1 was characterized. The enzyme (PaAmi1) was cloned into a T7 expression vector and expressed in E. coli BL21 cells. Kinetics analysis using turbidity reduction assays allowed the determination of the optimal conditions for lytic activity against a range of Gram-positive and negative human pathogens. The peptidoglycan degradation activity of PaAmi1 was confirmed using isolated peptidoglycan from P. acnes. The antibacterial activity of PaAmi1 was investigated using live P. acnes cells growing on agar plates. Two engineered variants of PaAmi1 were designed by fusion to its N-terminus two short antimicrobial peptides (AMPs). One AMP was selected by searching the genomes of Propionibacterium bacteriophages using bioinformatics tools, whereas the other AMP sequence was selected from the antimicrobial peptide databases. Both engineered variants exhibited improved lytic activity towards P. acnes and the enterococci species Enterococcus faecalis and Enterococcus faecium. The results of the present study suggest that PaAmi1 is a new antimicrobial agent and provide proof of concept that bacteriophage genomes are a rich source of AMP sequences that can be further exploited for designing novel or improved endolysins.
Subject(s)
Bacteriophages , Siphoviridae , Humans , Propionibacterium acnes/genetics , Peptidoglycan/metabolism , Escherichia coli/metabolism , Endopeptidases/metabolism , Siphoviridae/metabolism , Bacteriophages/metabolism , Anti-Bacterial Agents/chemistryABSTRACT
Human glutathione transferase A4-4 (hGSTA4-4) displays high catalytic efficiency towards 4-hydroxyalkenals and other cytotoxic and mutagenic products of radical reactions and lipid peroxidation. Its role as a target for the chemosensitization of cancer cells has not been investigated so far. In this study, the inhibitory potency of twelve selected natural products and ten monocarbonyl curcumin derivatives against hGSTA4-4 was studied. Among natural products, ellagic acid turned out to be the strongest inhibitor with an IC50 value of 0.44 ± 0.01 µM. Kinetic analysis using glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) as variable substrates showed that ellagic acid behaved as a competitive inhibitor towards both GSH and CDNB, with Ki values of 0.39 ± 0.02 and 0.63 ± 0.03 µM, respectively. Among the curcumin derivatives studied, three proved to be the most potent inhibitors, in the order DM151 > DM101 > DM100, with IC50 values of 2.4 ± 0.1 µM, 12.7 ± 1.1 µΜ and 16.9 ± 0.4 µΜ, respectively. Further kinetic inhibition analysis of the most active derivative, DM151, demonstrated that this compound is a mixed inhibitor towards CDNB with inhibition constants of Ki = 4.1 ± 0.5 µM and Ki' = 0.536 ± 0.034 µM, while it is a competitive inhibitor towards GSH with a Ki = 0.98 ± 0.11 µM. Molecular docking studies were performed to interpret the differences in binding of ellagic acid and curcumin derivatives to hGSTA4-4. The in silico measured docking scores were consistent with the obtained experimental data. Hydrogen bonds appear to be the main contributors to the specific binding of monocarbonyl curcumin derivatives, while π-π stacking interactions play a key role in the enzyme-ellagic acid interaction. In vitro cytotoxicity assessment of the worst (DM148) and the best (DM151) inhibitors was performed against glioblastoma cell lines U-251 MG and U-87 MG. The results revealed that DM151 displays considerably higher cytotoxicity against both glioblastoma cell lines, while the glioblastoma cytotoxicity of DM148 was very limited. Furthermore, low and non-toxic doses of DM151 sensitized U-251 MG cells to the first-line glioblastoma chemotherapeutic temozolomide (TMZ), allowing us to propose for the first time that hGSTA4-4 inhibitors may be attractive therapeutic partners for TMZ to optimize its clinical effect in glioblastoma chemotherapy.
ABSTRACT
The classification of Acinetobacter baumannii by WHO as 'priority 1' antibiotic-resistant pathogen underlines the urgent need for novel antimicrobial agents towards this pathogen. In this work, screening of the A. baumannii phage AbTZA1 genome allowed the identification of a putative endolysin (AbLys1, EC3.2.1.17) that belongs to the glycoside hydrolase family 24 (GH24). The sequence of AbLys1 was cloned, expressed in E. coli and purified. The lytic activity and specificity of AbLys1 were evaluated against a range of Gram-positive and Gram-negative human pathogens. AbLys1 was found to display a high selectivity towards A. baumannii. Kinetic analysis was carried out to characterize the dependence of its lytic activity on pH. The enzyme shows its maximal activity at pH values 7-8. The structure of AbLys1 was determined by X-ray crystallography to 1.82 Å resolution. The overall structure revealed two helical domains: a small, antenna-like, N-terminal domain and a larger C-terminal domain with six α-helices and a ß-hairpin. Both the antenna-like and ß-hairpin regions contain short sequences (AMseq1 and AMseq2) with predicted antimicrobial activity. Engineering studies revealed a key role of AMseq1 and AMseq2 on the enzyme's lytic activity towards A. baumannii cells but not towards purified peptidoglycan. This suggests that both sequences affect the destabilization of the outer membrane, thus providing access of the catalytic domain to the peptidoglycan. In addition, the deletion of AMseq1 enhanced the enzyme stability, whereas the deletion of AMseq2 diminished it. The results suggest that AbLys1 is a promising new enzybiotic with efficient lytic and antimicrobial activity.
Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , Bacteriophages , Humans , Bacteriophages/genetics , Acinetobacter baumannii/genetics , Glycoside Hydrolases/metabolism , Peptidoglycan , Escherichia coli/genetics , Escherichia coli/metabolism , Kinetics , Endopeptidases/metabolism , Anti-Bacterial Agents/pharmacologyABSTRACT
Multidrug-resistant (MDR) bacteria are a growing threat to the public health. Among them, the Gram-negative Acinetobacter baumannii is considered today as the most dangerous MDR pathogen. Phage-derived endolysins are peptidoglycan (PG) hydrolytic enzymes that can function as effective tools in the fight against MDR bacteria. In the present work, the viral diversity of a marine environmental sample (biofilm), formed near an industrial zone, was mined for the identification of a putative endolysin (AbLys2) that belongs to the glycoside hydrolase family 24 (GH24, EC 3.2.1.17). The coding sequence of AbLys2 was cloned and expressed in E. coli. The lytic activity and specificity of the recombinant enzyme were evaluated against suspensions of a range of Gram-positive and Gram-negative human pathogens using turbidity assays. AbLys2 displayed enhanced selectivity towards A. baumannii cells, compared to other bacteria. Kinetics analysis was carried out to characterize the dependence of its lytic activity on pH and showed that the enzyme exhibits its maximal activity at pH 5.5. Thermostability analysis showed that AbLys2 displays melting temperature Tm 47.1 °C. Florescence microscopy and cell viability assays established that AbLys2 is active towards live cultures of A. baumannii cells with an inhibitory concentration IC50 3.41 ± 0.09 µM. Molecular modeling allowed the prediction of important amino acid residues involved in catalysis. The results of the present study suggest that AbLys2 provides efficient lytic and antimicrobial activity towards A. baumannii cells and therefore is a promising new antimicrobial against this pathogen.
Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , Humans , Acinetobacter baumannii/genetics , Glycoside Hydrolases/genetics , Escherichia coli , Anti-Infective Agents/pharmacology , BiofilmsABSTRACT
Multidrug-resistant (MDR) bacteria have become a growing threat to public health. The gram-positive Enterococcus faecium is classified by WHO as a high-priority pathogen among the global priority list of antibiotic-resistant bacteria. Peptidoglycan-degrading enzymes (PDEs), also known as enzybiotics, are useful bactericidal agents in the fight against resistant bacteria. In this work, a genome-based screening approach of the genome of E. faecium allowed the identification of a putative PDE gene with predictive amidase activity (EfAmi1; EC 3.5.1.28) in a prophage-integrated sequence. EfAmi1 is composed by two domains: a N-terminal Zn2+-dependent N-acetylmuramoyl-L-alanine amidase-2 (NALAA-2) domain and a C-terminal domain with unknown structure and function. The full-length gene of EfAmi1 was cloned and expressed as a 6xHis-tagged protein in E. coli. EfAmi1 was produced as a soluble protein, purified, and its lytic and antimicrobial activities were investigated using turbidity reduction and Kirby-Bauer disk-diffusion assays against clinically isolated bacterial pathogens. The crystal structure of the N-terminal amidase-2 domain was determined using X-ray crystallography at 1.97 Å resolution. It adopts a globular fold with several α-helices surrounding a central five-stranded ß-sheet. Sequence comparison revealed a cluster of conserved amino acids that defines a putative binding site for a buried zinc ion. The results of the present study suggest that EfAmi1 displays high lytic and antimicrobial activity and may represent a promising new antimicrobial in the post-antibiotic era.
Subject(s)
Enterococcus faecium , Prophages , Prophages/metabolism , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Amidohydrolases/metabolism , Anti-Bacterial AgentsABSTRACT
In the present study, we report the development of a cellulose-based affinity adsorbent and its application for the purification of proteases from fish by-products. The affinity adsorbent was synthesized using cellulose microfibers as the matrix, isolated from recycled newspapers using the acid precipitation method. As an affinity ligand, the triazine dye Cibacron Blue 3GA (CB3GA) was used and immobilized directly onto the cellulose microfibers. Absorption equilibrium studies and frontal affinity chromatography were employed to evaluate the chromatographic performance of the adsorbent using as model proteins bovine serum albumin (BSA) and lysozyme (LYS). Absorption equilibrium studies suggest that the adsorption of both proteins obeys the Langmuir isotherm model. The kinetics of adsorption obey the pseudo-second-order model. The affinity adsorbent was applied for the development of a purification procedure for proteases from Sparus aurata by-products (stomach and pancreas). A single-step purification protocol for trypsin and chymotrypsin was developed and optimized. The protocol afforded enzymes with high yields suitable for technical and industrial purposes.