Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Pept Sci ; 30(4): e3551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37926859

ABSTRACT

Antibiotic resistance is an escalating global health threat. Due to their diverse mechanisms of action and evasion of traditional resistance mechanisms, peptides hold promise as future antibiotics. Their ability to disrupt bacterial membranes presents a potential strategy to combat drug-resistant infections and address the increasing need for effective antimicrobial treatments. Amphipathic α-helical peptides possess a distinctive molecular structure with both charged/hydrophilic and hydrophobic regions that interact with the bacterial cell membrane, disrupting its structural integrity. The α-helical amphipathic peptide aurein 1.2, secreted by the Australian frog Litoria aurea, is one of the shortest known antimicrobial peptides, spanning only 13 amino acids. The primary objective of this study was to investigate stapled and photoswitchable modifications of short helical peptides employing biocompatible chemistry, utilising aurein 1.2 as a model system. We developed various stapled versions of aurein 1.2 using biocompatible conjugation chemistry between dicyanopyridine and 1,2-aminothiols. While the commonly employed stapling pattern for longer staples is i, i + 7, we observed superior helicity in peptides stapled at positions i, i + 8. Molecular dynamics simulations confirmed both stapling patterns to support an α-helical peptide conformation. Additionally, we utilised a cysteine-selective photosensitive staple, perfluoro azobenzene, to explore photoswitchable variants of aurein 1.2. A double-cysteine variant stapled at i, i + 7 indeed exhibited a change in overall helicity induced by light. We further demonstrated the applicability of this staple to attach to cysteine residues in i, i + 7 positions of a helix in a model protein. While some of the stapled variants displayed substantial increase in helicity, minimal inhibitory concentration assays revealed that none of the stapled aurein 1.2 variants exhibited increased antimicrobial activity compared to the wildtype.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Animals , Amino Acid Sequence , Cysteine , Protein Conformation , Australia , Peptides/pharmacology , Peptides/chemistry , Anura , Bacteria
2.
Biochemistry ; 61(5): 319-326, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35129961

ABSTRACT

Coiled coils are among the most abundant tertiary and quaternary structures found in proteins. A growing body of evidence suggests that long-range synergistic interactions among solvent-exposed residues can contribute substantially to coiled-coil conformational stability, but our understanding of the key sequence and structural prerequisites of this effect is still developing. Here, we show that the strength of synergistic interaction involving a b-position Glu (i), an f-position Tyr (i + 4), and a c-position Lys (i + 8) depends on the identity of the f-position residue, the length and stability of the coiled coil, and its oligomerization stoichiometry/surface accessibility. Combined with previous observations, these results map out predictable sequence- and structure-based criteria for enhancing coiled-coil stability by up to -0.58 kcal/mol per monomer (or -2.32 kcal/mol per coiled-coil tetramer). Our observations expand the available tools for enhancing coiled coil stability by sequence variation at solvent-exposed b-, c-, and f-positions and suggest the need to exercise care in the choice of substitutions at these positions for application-specific purposes.


Subject(s)
Protein Structure, Secondary , Amino Acid Sequence , Circular Dichroism , Protein Denaturation , Solvents
3.
Biochemistry ; 60(26): 2064-2070, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34137579

ABSTRACT

Here we show that an NH-π interaction between a highly conserved Asn and a nearby Trp stabilizes the WW domain of the human protein Pin1. The strength of this NH-π interaction depends on the structure of the arene, with NH-π interactions involving Trp or naphthylalanine being substantially more stabilizing than those involving Tyr or Phe. Calculations suggest arene size and polarizability are key structural determinants of NH-π interaction strength. Methylation or PEGylation of the Asn side-chain amide nitrogen each strengthens the associated NH-π interaction, though likely for different reasons. We hypothesize that methylation introduces steric clashes that destabilize conformations in which the NH-π interaction is not possible, whereas PEGylation strengthens the NH-π interaction via localized desolvation of the protein surface.


Subject(s)
Asparagine/chemistry , Hydrogen Bonding/drug effects , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , Polyethylene Glycols/chemistry , Tryptophan/chemistry , WW Domains/drug effects , Amino Acid Sequence , Humans , Methylation , Models, Molecular , Mutation , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Protein Conformation , Thermodynamics , WW Domains/genetics
4.
Biochemistry ; 59(17): 1672-1679, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32270676

ABSTRACT

Here we show that a solvent-exposed f-position (i.e., residue 14) within a well-characterized trimeric helix bundle can facilitate a stabilizing long-range synergistic interaction involving b-position Glu10 (i.e., i - 4 relative to residue 14) and c-position Lys18 (i.e., i + 4), depending the identity of residue 14. The extent of stabilization associated with the Glu10-Lys18 pair depends primarily on the presence of a side-chain hydrogen-bond donor at residue 14; the nonpolar or hydrophobic character of residue 14 plays a smaller but still significant role. Crystal structures and molecular dynamics simulations indicate that Glu10 and Lys18 do not interact directly with each other but suggest the possibility that the proximity of residue 14 with Lys18 allows Glu10 to interact favorably with nearby Lys7. Subsequent thermodynamic experiments confirm the important role of Lys7 in the large synergistic stabilization associated with the Glu10-Lys18 pair. Our results highlight the exquisite complexity and surprising long-range synergistic interactions among b-, c-, and f-position residues within helix bundles, suggesting new possibilities for engineering hyperstable helix bundles and emphasizing the need to consider carefully the impact of substitutions at these positions for application-specific purposes.


Subject(s)
Peptides/chemistry , Protein Multimerization , Solvents/chemistry , Amino Acid Sequence , Models, Molecular , Protein Conformation, alpha-Helical , Protein Folding , Thermodynamics , Transition Temperature
5.
J Org Chem ; 85(3): 1725-1730, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31749365

ABSTRACT

Many proteins have one or more surface-exposed patches of nonpolar residues; our observations here suggest that PEGylation near such locations might be a useful strategy for increasing protein conformational stability. Specifically, we show that conjugating a PEG-azide to a propargyloxyphenylalanine via the copper(I)-catalyzed azide-alkyne cycloaddition can increase the conformational stability of the WW domain due to a favorable synergistic effect that depends on the hydrophobicity of a nearby patch of nonpolar surface residues.


Subject(s)
Polyethylene Glycols , Proteins , Alkynes , Azides , Copper , Protein Conformation , Protein Stability , WW Domains
6.
Org Biomol Chem ; 16(46): 8933-8939, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30444518

ABSTRACT

Hydrocarbon stapling and PEGylation are distinct strategies for enhancing the conformational stability and/or pharmacokinetic properties of peptide and protein drugs. Here we combine these approaches by incorporating asparagine-linked O-allyl PEG oligomers at two positions within the ß-sheet protein WW, followed by stapling of the PEGs via olefin metathesis. The impact of stapling two sites that are close in primary sequence is small relative to the impact of PEGylation alone and depends strongly on PEG length. In contrast, stapling of two PEGs that are far apart in primary sequence but close in tertiary structure provides substantially more stabilization, derived mostly from an entropic effect. Comparison of PEGylation + stapling vs. alkylation + stapling at the same positions in WW reveals that both approaches provide similar overall levels of conformational stability.


Subject(s)
Asparagine/analogs & derivatives , Entropy , Peptides/chemistry , Polyethylene Glycols/chemistry , Proteins/chemistry , Alkenes/chemistry , Models, Molecular , Protein Conformation , Protein Conformation, beta-Strand , Protein Stability , WW Domains
7.
Bioconjug Chem ; 28(10): 2507-2513, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28972368

ABSTRACT

The development of chemical strategies for site-specific protein modification now enables researchers to attach polyethylene glycol (PEG) to a protein drug at one or more specific locations (i.e., protein PEGylation). However, aside from avoiding enzyme active sites or protein-binding interfaces, distinguishing the optimal PEGylation site from the available alternatives has conventionally been a matter of trial and error. As part of a continuing effort to develop guidelines for identifying optimal PEGylation sites within proteins, we show here that the impact of PEGylation at various sites within the ß-sheet model protein WW depends strongly on the identity of the PEG-protein linker. The PEGylation of Gln or of azidohomoalanine has a similar impact on WW conformational stability as does Asn-PEGylation, whereas the PEGylation of propargyloxyphenylalanine is substantially stabilizing at locations where Asn-PEGylation was destabilizing. Importantly, we find that at least one of these three site-specific PEGylation strategies leads to substantial PEG-based stabilization at each of the positions investigated, highlighting the importance of considering conjugation strategy as an important variable in selecting optimal PEGylation sites. We further demonstrate that using a branched PEG oligomer intensifies the impact of PEGylation on WW conformational stability and also show that PEG-based increases to conformational stability are strongly associated with corresponding increases in proteolytic stability.


Subject(s)
Polyethylene Glycols/chemistry , Proteins/chemistry , Proteins/metabolism , Proteolysis , Amino Acid Sequence , Models, Molecular , Protein Conformation, beta-Strand , Protein Stability
8.
Org Biomol Chem ; 15(28): 5882-5886, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28678274

ABSTRACT

The interaction of a positively charged amino acid residue with a negatively charged residue (i.e. a salt bridge) can contribute substantially to protein conformational stability, especially when two ionic groups are in close proximity. At longer distances, this stabilizing effect tends to drop off precipitously. However, several lines of evidence suggest that salt-bridge interaction could persist at longer distances if an aromatic amino acid residue were positioned between the anion and cation. Here we explore this possibility in the context of a peptide in which a Lys residue occupies the i + 8 position relative to an i-position Glu on the solvent-exposed surface of a helix-bundle homotrimer. Variable temperature circular dichroism (CD) experiments indicate that an i + 4-position Trp enables a favorable long-range interaction between Glu and the i + 8 Lys. A substantial portion of this effect relies on the presence of a hydrogen-bond donor on the arene; however, non-polar arenes, a cyclic hydrocarbon, and an acyclic Leu side-chain can also enhance the long-range salt bridge, possibly by excluding water and ions from the space between Glu and Lys.


Subject(s)
Amino Acids/chemistry , Hydrogen Bonding , Models, Molecular , Peptides/chemical synthesis , Peptides/chemistry , Salts/chemistry
9.
J Am Chem Soc ; 136(50): 17547-60, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25409346

ABSTRACT

PEGylation of protein side chains has been used for more than 30 years to enhance the pharmacokinetic properties of protein drugs. However, there are no structure- or sequence-based guidelines for selecting sites that provide optimal PEG-based pharmacokinetic enhancement with minimal losses to biological activity. We hypothesize that globally optimal PEGylation sites are characterized by the ability of the PEG oligomer to increase protein conformational stability; however, the current understanding of how PEG influences the conformational stability of proteins is incomplete. Here we use the WW domain of the human protein Pin 1 (WW) as a model system to probe the impact of PEG on protein conformational stability. Using a combination of experimental and theoretical approaches, we develop a structure-based method for predicting which sites within WW are most likely to experience PEG-based stabilization, and we show that this method correctly predicts the location of a stabilizing PEGylation site within the chicken Src SH3 domain. PEG-based stabilization in WW is associated with enhanced resistance to proteolysis, is entropic in origin, and likely involves disruption by PEG of the network of hydrogen-bound solvent molecules that surround the protein. Our results highlight the possibility of using modern site-specific PEGylation techniques to install PEG oligomers at predetermined locations where PEG will provide optimal increases in conformational and proteolytic stability.


Subject(s)
Polyethylene Glycols/chemistry , Protein Stability , Proteins/chemistry , Amino Acid Sequence , Binding Sites , Molecular Sequence Data , Protein Conformation , Thermodynamics
10.
Biomacromolecules ; 15(12): 4643-7, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25387132

ABSTRACT

PEGylation is an important strategy for enhancing the pharmacokinetic properties of protein drugs. Modern chemoselective reactions now enable specific placement of a single PEG at any site on a protein surface. However, few rational structure-based guidelines exist for selecting optimal PEGylation sites. Here, we explore the impact of PEGylation on the conformational stability of α-helices using an α-helical coiled coil as a model system. We find that maleimide-based PEGylation of a solvent-exposed i position Cys can stabilize coiled-coil quaternary structure when Lys residues occupy both the i + 3 and i + 4 positions, due to favorable interactions between the PEG-maleimide and the Lys residues. Applying this Cys(i)-Lys(i+3)-Lys(i+4) triad to a solvent-exposed position within the C-terminal helix of the villin headpiece domain leads to similar PEG-based increases in conformational stability, highlighting the possibility of using the Cys(i)-Lys(i+3)-Lys(i+4) triad as a general strategy for PEG-based stabilization of helical proteins.


Subject(s)
Cysteine/chemistry , Lysine/chemistry , Polyethylene Glycols/chemistry , Proteins/chemistry , Amino Acid Sequence , Molecular Sequence Data , Protein Structure, Secondary
11.
Proc Natl Acad Sci U S A ; 108(34): 14127-32, 2011 Aug 23.
Article in English | MEDLINE | ID: mdl-21825145

ABSTRACT

Cotranslational N-glycosylation can accelerate protein folding, slow protein unfolding, and increase protein stability, but the molecular basis for these energetic effects is incompletely understood. N-glycosylation of proteins at naïve sites could be a useful strategy for stabilizing proteins in therapeutic and research applications, but without engineering guidelines, often results in unpredictable changes to protein energetics. We recently introduced the enhanced aromatic sequon as a family of portable structural motifs that are stabilized upon glycosylation in specific reverse turn contexts: a five-residue type I ß-turn harboring a G1 ß-bulge (using a Phe-Yyy-Asn-Xxx-Thr sequon) and a type II ß-turn within a six-residue loop (using a Phe-Yyy-Zzz-Asn-Xxx-Thr sequon) [Culyba EK, et al. (2011) Science 331:571-575]. Here we show that glycosylating a new enhanced aromatic sequon, Phe-Asn-Xxx-Thr, in a type I' ß-turn stabilizes the Pin 1 WW domain. Comparing the energetic effects of glycosylating these three enhanced aromatic sequons in the same host WW domain revealed that the glycosylation-mediated stabilization is greatest for the enhanced aromatic sequon complementary to the type I ß-turn with a G1 ß-bulge. However, the portion of the stabilization from the tripartite interaction between Phe, Asn(GlcNAc), and Thr is similar for each enhanced aromatic sequon in its respective reverse turn context. Adding the Phe-Asn-Xxx-Thr motif (in a type I' ß-turn) to the enhanced aromatic sequon family doubles the number of proteins that can be stabilized by glycosylation without having to alter the native reverse turn type.


Subject(s)
Amino Acids, Aromatic/metabolism , Protein Stability , Proteins/chemistry , Proteins/metabolism , Amino Acid Sequence , Glycosylation , Linear Models , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Terminology as Topic , Thermodynamics
12.
Pept Sci (Hoboken) ; 116(2)2024 Mar.
Article in English | MEDLINE | ID: mdl-38882551

ABSTRACT

Coiled coils are one of most common protein quaternary structures and represent the best understood relationship between amino acid sequence and protein conformation. Whereas the roles of residues at the canonical heptad positions the a, d, e, and g are understood in precise detail, conventional approaches often assume that the solvent-exposed b-, c-, and f-positions can be varied broadly for application-specific purposes with minimal consequences. However, a growing body of evidence suggests that interactions among these b, c, and f residues can contribute substantially to coiled-coil conformational stability. In the trimeric coiled coil described here, we find that b-position Glu10 engages in a stabilizing long-range synergistic interaction with c-position Lys18 (ΔΔΔGf = -0.65 ± 0.02 kcal/mol). This favorable interaction depends strongly on the presence of two nearby f-position residues: Lys 7 and Tyr14. Extensive mutational analysis of these residues in the presence of added salt vs. denaturant suggests that this long-range synergistic interaction is primarily electrostatic in origin, but also depends on the precise location and acidity of a side-chain hydrogen-bond donor within f-position Tyr14.

13.
J Am Chem Soc ; 135(26): 9877-84, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23742246

ABSTRACT

Carbohydrate-aromatic interactions mediate many biological processes. However, the structure-energy relationships underpinning direct carbohydrate-aromatic packing interactions in aqueous solution have been difficult to assess experimentally and remain elusive. Here, we determine the structures and folding energetics of chemically synthesized glycoproteins to quantify the contributions of the hydrophobic effect and CH-π interactions to carbohydrate-aromatic packing interactions in proteins. We find that the hydrophobic effect contributes significantly to protein-carbohydrate interactions. Interactions between carbohydrates and aromatic amino acid side chains, however, are supplemented by CH-π interactions. The strengths of experimentally determined carbohydrate CH-π interactions do not correlate with the electrostatic properties of the involved aromatic residues, suggesting that the electrostatic component of CH-π interactions in aqueous solution is small. Thus, tight binding of carbohydrates and aromatic residues is driven by the hydrophobic effect and CH-π interactions featuring a dominating dispersive component.


Subject(s)
Carbohydrates/chemistry , Hydrocarbons, Aromatic/chemistry , Proteins/chemistry , Thermodynamics , Models, Molecular , Molecular Structure , Protein Folding
14.
Bioconjug Chem ; 24(5): 796-802, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23578107

ABSTRACT

Protein PEGylation is an effective method for reducing the proteolytic susceptibility, aggregation propensity, and immunogenicity of protein drugs. These pharmacokinetic challenges are fundamentally related to protein conformational stability, and become much worse for proteins that populate the unfolded state under ambient conditions. If PEGylation consistently led to increased conformational stability, its beneficial pharmacokinetic effects could be extended and enhanced. However, the impact of PEGylation on protein conformational stability is currently unpredictable. Here we show that appending a short PEG oligomer to a single Asn side chain within a reverse turn in the WW domain of the human protein Pin 1 increases WW conformational stability in a manner that depends strongly on the length of the PEG oligomer: shorter oligomers increase folding rate, whereas longer oligomers increase folding rate and reduce unfolding rate. This strong length dependence is consistent with the possibility that the PEG oligomer stabilizes the transition and folded states of WW relative to the unfolded state by interacting favorably with side-chain or backbone groups on the WW surface.


Subject(s)
Peptidylprolyl Isomerase/chemistry , Polyethylene Glycols/chemistry , Protein Folding , Humans , Models, Molecular , NIMA-Interacting Peptidylprolyl Isomerase , Protein Conformation , Protein Stability , Protein Structure, Tertiary
15.
Sci Rep ; 13(1): 15493, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726313

ABSTRACT

Various approaches have used neural networks as probabilistic models for the design of protein sequences. These "inverse folding" models employ different objective functions, which come with trade-offs that have not been assessed in detail before. This study introduces probabilistic definitions of protein stability and conformational specificity and demonstrates the relationship between these chemical properties and the [Formula: see text] Boltzmann probability objective. This links the Boltzmann probability objective function to experimentally verifiable outcomes. We propose a novel sequence decoding algorithm, referred to as "BayesDesign", that leverages Bayes' Rule to maximize the [Formula: see text] objective instead of the [Formula: see text] objective common in inverse folding models. The efficacy of BayesDesign is evaluated in the context of two protein model systems, the NanoLuc enzyme and the WW structural motif. Both BayesDesign and the baseline ProteinMPNN algorithm increase the thermostability of NanoLuc and increase the conformational specificity of WW. The possible sources of error in the model are analyzed.


Subject(s)
Algorithms , Bayes Theorem , Protein Stability , Amino Acid Sequence , Likelihood Functions
16.
RSC Chem Biol ; 3(9): 1096-1104, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128502

ABSTRACT

Macrocyclization or stapling is one of the most well-known and generally applicable strategies for enhancing peptide/protein conformational stability and target binding affinity. However, there are limited structure- or sequence-based guidelines for the incorporation of optimal interhelical staples within coiled coils: the location and length of an interhelical staple is either arbitrarily chosen or requires significant optimization. Here we explore the impact of interhelical PEG stapling on the conformational stability and proteolytic resistance of a model disulfide-bound heterodimeric coiled coil. We demonstrate that (1) interhelical PEG staples are more stabilizing when placed farther from an existing disulfide crosslink; (2) e/g' staples are more stabilizing than f/b' or b/c' staples; (3) PEG staples between different positions have different optimal staple lengths; (4) PEG stapling tolerates variation in the structure of the PEG linker and in the mode of conjugation; and (5) the guidelines developed here enable the rational design of a stabilized PEG-stapled HER-2 affibody with enhanced conformational stability and proteolytic resistance.

17.
Biochem Biophys Res Commun ; 410(4): 707-13, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21557933

ABSTRACT

The transthyretin amyloidoses are a subset of protein misfolding diseases characterized by the extracellular deposition of aggregates derived from the plasma homotetrameric protein transthyretin (TTR) in peripheral nerves and the heart. We have established a robust disease-relevant human cardiac tissue culture system to explore the cytotoxic effects of amyloidogenic TTR variants. We have employed this cardiac amyloidosis tissue culture model to screen 23 resveratrol analogs as inhibitors of amyloidogenic TTR-induced cytotoxicity and to investigate their mechanisms of protection. Resveratrol and its analogs kinetically stabilize the native tetramer preventing the formation of cytotoxic species. In addition, we demonstrate that resveratrol can accelerate the formation of soluble non-toxic aggregates and that the resveratrol analogs tested can bring together monomeric TTR subunits to form non-toxic native tetrameric TTR.


Subject(s)
Amyloidosis/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Myocytes, Cardiac/drug effects , Prealbumin/antagonists & inhibitors , Stilbenes/chemistry , Stilbenes/pharmacology , Cell Line , Humans , Myocytes, Cardiac/metabolism , Prealbumin/metabolism , Prealbumin/toxicity , Resveratrol
18.
Proc Natl Acad Sci U S A ; 105(27): 9151-6, 2008 Jul 08.
Article in English | MEDLINE | ID: mdl-18587049

ABSTRACT

The extent to which polypeptide conformation depends on side-chain composition and sequence has been widely studied, but less is known about the importance of maintaining an alpha-amino acid backbone. Here, we examine a series of peptides with backbones that feature different repeating patterns of alpha- and beta-amino acid residues but an invariant side-chain sequence. In the pure alpha-backbone, this sequence corresponds to the previously studied peptide GCN4-pLI, which forms a very stable four-helix bundle quaternary structure. Physical characterization in solution and crystallographic structure determination show that a variety of alpha/beta-peptide backbones can adopt sequence-encoded quaternary structures similar to that of the alpha prototype. There is a loss in helix bundle stability upon beta-residue incorporation; however, stability of the quaternary structure is not a simple function of beta-residue content. We find that cyclically constrained beta-amino acid residues can stabilize the folds of alpha/beta-peptide GCN4-pLI analogues and restore quaternary structure formation to backbones that are predominantly unfolded in the absence of cyclic residues. Our results show a surprising degree of plasticity in terms of the backbone compositions that can manifest the structural information encoded in a sequence of amino acid side chains. These findings offer a framework for the design of nonnatural oligomers that mimic the structural and functional properties of proteins.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Protein Folding , Amino Acid Sequence , Circular Dichroism , Crystallography, X-Ray , Cyclization , Molecular Sequence Data , Protein Structure, Secondary
19.
J Am Chem Soc ; 132(35): 12378-87, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20718422

ABSTRACT

We report high-resolution crystal structures of six new alpha/beta-peptide foldamers that have a regular alpha-residue/alpha-residue/beta-residue (alphaalphabeta) backbone repeat pattern. All of these foldamers were crystallized from aqueous solution, and all display four-helix bundle quaternary structure in the crystalline state. These oligomers are based on the well-studied 33-residue alpha-peptide GCN4-pLI, which is an engineered derivative of the dimerization domain of GCN4, a yeast transcription factor. GCN4-pLI forms a stable tetramer in solution and crystallizes as a four-helix bundle (Harbury et al. Science 1993, 262, 1401-1407). Previously we described a foldamer (designated 1 here) that was generated from GCN4-pLI by replacing every third alpha-amino acid residue with the homologous beta(3)-amino acid residue; this alphaalphabeta oligomer retains the side chain sequence of the original alpha-peptide, but the backbone contains 11 additional CH(2) units, which are evenly distributed (Horne et al. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 9151-9156). Despite the expanded backbone, 1 was found to retain the ability to form a tetrameric quaternary structure in which the individual molecules adopt an alpha-helix-like conformation. Here we compare nine analogues of 1 that have the same alphaalphabeta backbone but in which one or more of the flexible beta(3)-amino acid residues is/are replaced with an analogous cyclic beta-residue. The motivation for beta(3)-->cyclic replacements is to enhance conformational stability; however, a crystal structure of the one previously reported example (designated 2 here) revealed a "stammer" distortion of the helix-bundle architecture relative to 1. The results reported here suggest that the stammer is a peculiarity of 2, because all six of the new alpha/beta-peptides display undistorted four-helix bundle quaternary structures. More broadly, our results indicate that beta(3)-->cyclic replacements are generally well-accommodated in helix-bundle quaternary structure, but that such replacements can be destabilizing in certain instances.


Subject(s)
Amino Acids/chemistry , Peptides/chemical synthesis , Amino Acid Sequence , Peptides/chemistry , Protein Folding , Protein Structure, Secondary
20.
J Am Chem Soc ; 132(43): 15359-67, 2010 Nov 03.
Article in English | MEDLINE | ID: mdl-20936810

ABSTRACT

Asparagine glycosylation is one of the most common and important post-translational modifications of proteins in eukaryotic cells. N-glycosylation occurs when a triantennary glycan precursor is transferred en bloc to a nascent polypeptide (harboring the N-X-T/S sequon) as the peptide is cotranslationally translocated into the endoplasmic reticulum (ER). In addition to facilitating binding interactions with components of the ER proteostasis network, N-glycans can also have intrinsic effects on protein folding by directly altering the folding energy landscape. Previous work from our laboratories (Hanson et al. Proc. Natl. Acad. Sci. U.S.A. 2009, 109, 3131-3136; Shental-Bechor, D.; Levy, Y. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8256-8261) suggested that the three sugar residues closest to the protein are sufficient for accelerating protein folding and stabilizing the resulting structure in vitro; even a monosaccharide can have a dramatic effect. The highly conserved nature of these three proximal sugars in N-glycans led us to speculate that introducing an N-glycosylation site into a protein that is not normally glycosylated would stabilize the protein and increase its folding rate in a manner that does not depend on the presence of specific stabilizing protein-saccharide interactions. Here, we test this hypothesis experimentally and computationally by incorporating an N-linked GlcNAc residue at various positions within the Pin WW domain, a small ß-sheet-rich protein. The results show that an increased folding rate and enhanced thermodynamic stability are not general, context-independent consequences of N-glycosylation. Comparison between computational predictions and experimental observations suggests that generic glycan-based excluded volume effects are responsible for the destabilizing effect of glycosylation at highly structured positions. However, this reasoning does not adequately explain the observed destabilizing effect of glycosylation within flexible loops. Our data are consistent with the hypothesis that specific, evolved protein-glycan contacts must also play an important role in mediating the beneficial energetic effects on protein folding that glycosylation can confer.


Subject(s)
Asparagine/metabolism , Cytoplasmic Dyneins/chemistry , Cytoplasmic Dyneins/metabolism , Protein Folding , Amino Acid Sequence , Glycosylation , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL