Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37974505

ABSTRACT

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Subject(s)
Aneuploidy , Chromosome Disorders , Chromosomes, Human, Pair 22 , Eye Abnormalities , Heart Defects, Congenital , Humans , Retrospective Studies , In Situ Hybridization, Fluorescence , Chromosomes, Human, Pair 22/genetics , Heart Defects, Congenital/genetics
2.
J Inherit Metab Dis ; 47(2): 255-269, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38012812

ABSTRACT

Glycogen storage disease type IV (GSD IV), also called Andersen disease, or amylopectinosis, is a highly heterogeneous autosomal recessive disorder caused by a glycogen branching enzyme (GBE, 1,4-alpha-glucan branching enzyme) deficiency secondary to pathogenic variants on GBE1 gene. The incidence is evaluated to 1:600 000 to 1:800 000 of live births. GBE deficiency leads to an excessive deposition of structurally abnormal, amylopectin-like glycogen in affected tissues (liver, skeletal muscle, heart, nervous system, etc.). Diagnosis is often guided by histological findings and confirmed by GBE activity deficiency and molecular studies. Severe neuromuscular forms of GSD IV are very rare and of disastrous prognosis. Identification and characterization of these forms are important for genetic counseling for further pregnancies. Here we describe clinical, histological, enzymatic, and molecular findings of 10 cases from 8 families, the largest case series reported so far, of severe neuromuscular forms of GSD IV along with a literature review. Main antenatal features are: fetal akinesia deformation sequence or arthrogryposis/joint contractures often associated with muscle atrophy, decreased fetal movement, cystic hygroma, and/or hydrops fetalis. If pregnancy is carried to term, the main clinical features observed at birth are severe hypotonia and/or muscle atrophy, with the need for mechanical ventilation, cardiomyopathy, retrognathism, and arthrogryposis. All our patients were stillborn or died within 1 month of life. In addition, we identified five novel GBE1 variants.


Subject(s)
Arthrogryposis , Glycogen Storage Disease Type IV , Glycogen Storage Disease , Infant, Newborn , Humans , Female , Pregnancy , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/pathology , Arthrogryposis/complications , Arthrogryposis/pathology , Glycogen , Muscle, Skeletal/pathology , Muscular Atrophy/complications , Muscular Atrophy/pathology , Glycogen Storage Disease/complications
3.
Eur J Neurol ; 30(7): 2001-2011, 2023 07.
Article in English | MEDLINE | ID: mdl-36943151

ABSTRACT

BACKGROUND AND PURPOSE: Biallelic variants in SORD have been reported as one of the main recessive causes for hereditary peripheral neuropathies such as Charcot-Marie-Tooth disease type 2 (CMT2) and distal hereditary motor neuropathy (dHMN) resulting in lower limb (LL) weakness and muscular atrophy. In this study, phenotype and genotype landscapes of SORD-related peripheral neuropathies were described in a French and Swiss cohort. Serum sorbitol dosages were used to classify SORD variants. METHODS: Patients followed at neuromuscular reference centres in France and Switzerland were ascertained. Sanger sequencing and next generation sequencing were performed to sequence SORD, and mass spectrometry was used to measure patients' serum sorbitol. RESULTS: Thirty patients had SORD peripheral neuropathy associating LL weakness with muscular atrophy, foot deformities (87%), and sometimes proximal LL weakness (20%) or distal upper limb weakness (50%). Eighteen had dHMN, nine had CMT2, and three had intermediate CMT. Most of them had a mild or moderate disease severity. Sixteen carried a homozygous c.757delG (p.Ala253Glnfs*27) variant, and 11 carried compound heterozygous variants, among which four variants were not yet reported: c.403C > G, c.379G > A, c.68_100 + 1dup, and c.850dup. Two unrelated patients with different origins carried a homozygous c.458C > A variant, and one patient carried a new homozygous c.786 + 5G > A variant. Mean serum sorbitol levels were 17.01 mg/L ± 8.9 SD for patients carrying SORD variants. CONCLUSIONS: This SORD-inherited peripheral neuropathy cohort of 30 patients showed homogeneous clinical presentation and systematically elevated sorbitol levels (22-fold) compared to controls, with both diagnostic and potential therapeutic implications.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Switzerland , Mutation , Charcot-Marie-Tooth Disease/genetics , Genotype , Muscular Atrophy
4.
Clin Genet ; 101(5-6): 494-506, 2022 05.
Article in English | MEDLINE | ID: mdl-35170016

ABSTRACT

Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some copy number variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development.


Subject(s)
Corneal Opacity , Eye Abnormalities , Anterior Eye Segment/abnormalities , Comparative Genomic Hybridization , Corneal Opacity/diagnosis , Corneal Opacity/genetics , Corneal Opacity/pathology , DNA Copy Number Variations/genetics , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Humans , Mutation/genetics , SOXB1 Transcription Factors/genetics
5.
Rev Infirm ; 71(280): 20-21, 2022 Apr.
Article in French | MEDLINE | ID: mdl-35550091

ABSTRACT

At night, the health executive ensures that the caregivers on duty in the departments can provide continuity of care under appropriate safety conditions for all. Involved in the functioning of the establishment, he/she collaborates with the director on duty and favours, when night situations require it, efficient decision making in compliance with the regulations. Lightening on the specific missions of this manager who, at night, works in confidence alongside the caregivers.


Subject(s)
Continuity of Patient Care , Female , Humans
6.
Kidney Int ; 99(3): 737-749, 2021 03.
Article in English | MEDLINE | ID: mdl-32750455

ABSTRACT

Although a rare disease, bilateral congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of end stage kidney disease in children. Ultrasound-based prenatal prediction of postnatal kidney survival in CAKUT pregnancies is far from accurate. To improve prediction, we conducted a prospective multicenter peptidome analysis of amniotic fluid spanning 140 evaluable fetuses with CAKUT. We identified a signature of 98 endogenous amniotic fluid peptides, mainly composed of fragments from extracellular matrix proteins and from the actin binding protein thymosin-ß4. The peptide signature predicted postnatal kidney outcome with an area under the curve of 0.96 in the holdout validation set of patients with CAKUT with definite endpoint data. Additionally, this peptide signature was validated in a geographically independent sub-cohort of 12 patients (area under the curve 1.00) and displayed high specificity in non-CAKUT pregnancies (82 and 94% in 22 healthy fetuses and in 47 fetuses with congenital cytomegalovirus infection respectively). Change in amniotic fluid thymosin-ß4 abundance was confirmed with ELISA. Knockout of thymosin-ß4 in zebrafish altered proximal and distal tubule pronephros growth suggesting a possible role of thymosin ß4 in fetal kidney development. Thus, recognition of the 98-peptide signature in amniotic fluid during diagnostic workup of prenatally detected fetuses with CAKUT can provide a long-sought evidence base for accurate management of the CAKUT disorder that is currently unavailable.


Subject(s)
Kidney Diseases , Urinary Tract , Urogenital Abnormalities , Amniotic Fluid , Animals , Child , Female , Humans , Kidney/diagnostic imaging , Peptides , Pregnancy , Prospective Studies , Urogenital Abnormalities/diagnostic imaging , Zebrafish
7.
Clin Genet ; 99(3): 407-417, 2021 03.
Article in English | MEDLINE | ID: mdl-33277917

ABSTRACT

White-Sutton syndrome is a rare developmental disorder characterized by global developmental delay, intellectual disabilities (ID), and neurobehavioral abnormalities secondary to pathogenic pogo transposable element-derived protein with zinc finger domain (POGZ) variants. The purpose of our study was to describe the neurocognitive phenotype of an unbiased national cohort of patients with identified POGZ pathogenic variants. This study is based on a French collaboration through the AnDDI-Rares network, and includes 19 patients from 18 families with POGZ pathogenic variants. All clinical data and neuropsychological tests were collected from medical files. Among the 19 patients, 14 patients exhibited ID (six mild, five moderate and three severe). The five remaining patients had learning disabilities and shared a similar neurocognitive profile, including language difficulties, dysexecutive syndrome, attention disorders, slowness, and social difficulties. One patient evaluated for autism was found to have moderate autism spectrum disorder. This study reveals that the cognitive phenotype of patients with POGZ pathogenic variants can range from learning disabilities to severe ID. It highlights that pathogenic variations in the same genes can be reported in a large spectrum of neurocognitive profiles, and that children with learning disabilities could benefit from next generation sequencing techniques.


Subject(s)
Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Genetic Variation , Intellectual Disability/genetics , Neurocognitive Disorders/genetics , Transposases/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , France , Genetic Predisposition to Disease , Humans , Male , Mutation , Neuropsychological Tests , Phenotype , Young Adult
8.
Clin Genet ; 98(3): 261-273, 2020 09.
Article in English | MEDLINE | ID: mdl-32621347

ABSTRACT

Megacystis-microcolon-intestinal-hypoperistalsis syndrome (MMIHS) is a severe congenital visceral myopathy characterized by an abdominal distension due to a large non-obstructed urinary bladder, a microcolon and intestinal hypo- or aperistalsis. Most of the patients described to date carry a sporadic heterozygous variant in ACTG2. More recently, recessive forms have been reported and mutations in MYH11, LMOD1, MYLK and MYL9 have been described at the molecular level. In the present report, we describe five patients carrying a recurrent heterozygous variant in ACTG2. Exome sequencing performed in four families allowed us to identify the genetic cause in three. In two families, we identified variants in MMIHS causal genes, respectively a nonsense homozygous variant in MYH11 and a previously described homozygous deletion in MYL9. Finally, we identified compound heterozygous variants in a novel candidate gene, PDCL3, c.[143_144del];[380G>A], p.[(Tyr48Ter)];[(Cys127Tyr)]. After cDNA analysis, a complete absence of PDLC3 expression was observed in affected individuals, indicating that both mutated transcripts were unstable and prone to mediated mRNA decay. PDCL3 encodes a protein involved in the folding of actin, a key step in thin filament formation. Presumably, loss-of-function of this protein affects the contractility of smooth muscle tissues, making PDCL3 an excellent candidate gene for autosomal recessive forms of MMIHS.


Subject(s)
Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Colon/abnormalities , Genetic Predisposition to Disease , Intestinal Pseudo-Obstruction/genetics , Nerve Tissue Proteins/genetics , Urinary Bladder/abnormalities , Abnormalities, Multiple/pathology , Aborted Fetus , Actins/genetics , Colon/pathology , Female , Homozygote , Humans , Infant, Newborn , Intestinal Pseudo-Obstruction/pathology , Male , Mutation/genetics , Myosin Heavy Chains/genetics , Myosin Light Chains/genetics , Pedigree , Urinary Bladder/pathology , Exome Sequencing
9.
Hum Mutat ; 40(10): 1713-1730, 2019 10.
Article in English | MEDLINE | ID: mdl-31050087

ABSTRACT

Ataxia-telangiectasia (A-T) is a recessive disorder caused by biallelic pathogenic variants of ataxia-telangiectasia mutated (ATM). This disease is characterized by progressive ataxia, telangiectasia, immune deficiency, predisposition to malignancies, and radiosensitivity. However, hypomorphic variants may be discovered associated with very atypical phenotypes, raising the importance of evaluating their pathogenic effects. In this study, multiple functional analyses were performed on lymphoblastoid cell lines from 36 patients, comprising 49 ATM variants, 24 being of uncertain significance. Thirteen patients with atypical phenotype and presumably hypomorphic variants were of particular interest to test strength of functional analyses and to highlight discrepancies with typical patients. Western-blot combined with transcript analyses allowed the identification of one missing variant, confirmed suspected splice defects and revealed unsuspected minor transcripts. Subcellular localization analyses confirmed the low level and abnormal cytoplasmic localization of ATM for most A-T cell lines. Interestingly, atypical patients had lower kinase defect and less altered cell-cycle distribution after genotoxic stress than typical patients. In conclusion, this study demonstrated the pathogenic effects of the 49 variants, highlighted the strength of KAP1 phosphorylation test for pathogenicity assessment and allowed the establishment of the Ataxia-TeLangiectasia Atypical Score to predict atypical phenotype. Altogether, we propose strategies for ATM variant detection and classification.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia/diagnosis , Ataxia Telangiectasia/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Alternative Splicing , Cell Cycle , Cell Line , DNA Mutational Analysis , Genetic Association Studies/methods , Genotype , Humans , Mutation , Phenotype
10.
Am J Hum Genet ; 98(5): 981-992, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27108798

ABSTRACT

Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions.


Subject(s)
Aniridia/etiology , Aniridia/pathology , Cerebellar Ataxia/etiology , Cerebellar Ataxia/pathology , Genes, Dominant/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Intellectual Disability/etiology , Intellectual Disability/pathology , Mutation/genetics , Adolescent , Adult , Animals , Cells, Cultured , Child , Female , Humans , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Mice , Microscopy, Confocal , Middle Aged , Pedigree , Protein Conformation
11.
Am J Hum Genet ; 98(3): 541-552, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26942287

ABSTRACT

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.


Subject(s)
Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Transposases/genetics , Adolescent , Adult , Animals , Autism Spectrum Disorder/diagnosis , Child , Child, Preschool , Cohort Studies , Down-Regulation , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Exome , Female , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Infant , Intellectual Disability/diagnosis , Language Development Disorders/diagnosis , Language Development Disorders/genetics , Linear Models , Male , Microcephaly/diagnosis , Microcephaly/genetics , Mutation , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Dis Colon Rectum ; 62(4): 470-475, 2019 04.
Article in English | MEDLINE | ID: mdl-30640315

ABSTRACT

BACKGROUND: Almost no prospective data on endoscopy in MUTYH monoallelic carriers are available. OBJECTIVE: This study aimed to define the prevalence of colorectal and duodenal adenomas in a population of people presenting with a single mutation of the MUTYH gene and being first-degree relatives of biallelic MUTYH mutation carriers. DESIGN: This study is a prospective cohort evaluation. PATIENTS: Patients were first-degree relatives of a patient who had polyposis with biallelic MUTYH mutation and carrying a single gene mutation of the gene from 12 French centers. SETTINGS: This is a multicenter study. INTERVENTION: Detailed data on life habits (tobacco, alcohol, and nonsteroidal anti-inflammatory drugs), extraintestinal manifestations, and germline analysis were recorded. Complete endoscopic evaluation (colonoscopy and upper endoscopy) with chromoendoscopy was performed. RESULTS: Sixty-two patients were prospectively included (34 women (55%), mean age of 54, range 30-70 years). Thirty-two patients (52%) presented with colorectal polyps at colonoscopy. Of these patients with polyps, 15 (25%) had only adenomas, 8 (13%) had only hyperplastic polyps, 1 (1%) had sessile serrated adenomas, and 8 (13%) had adenomas and/or sessile serrated adenomas. We detected, in total, 29 adenomas with low-grade dysplasia, 5 adenomas with high-grade dysplasia, and 6 sessile serrated adenomas. Fourteen patients (23%) presented with a single adenoma, and 10 (16%) had 1 to 5 adenomas. No patient had more than 5 adenomas. At upper endoscopy, 3 had a limited number of fundic gland polyps; none had duodenal adenomas. The 2 main missense mutations c.1145G>A, p.Gly382Asp and c.494A>G, p.Tyr165Cys were associated with the development of colorectal adenomas/serrated polyps in these monoallelic carriers. LIMITATIONS: This study was limited by the small number of patients. CONCLUSIONS: This prospective study provides unique prospective data suggesting that monoallelic mutation carriers related to patients with polyposis show no colorectal polyposis and have very limited upper GI manifestations justifying an endoscopic follow-up. See Video Abstract at http://links.lww.com/DCR/A862.


Subject(s)
Adenoma , Adenomatous Polyposis Coli , Colorectal Neoplasms , DNA Glycosylases/genetics , Duodenal Neoplasms , Endoscopy, Digestive System/methods , Adenoma/genetics , Adenoma/pathology , Adenomatous Polyposis Coli/diagnosis , Adenomatous Polyposis Coli/epidemiology , Adenomatous Polyposis Coli/genetics , Adult , Aged , Cohort Studies , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Coloring Agents/pharmacology , Duodenal Neoplasms/genetics , Duodenal Neoplasms/pathology , Family Health , Female , France/epidemiology , Humans , Image Enhancement/methods , Male , Middle Aged , Mutation , Outcome Assessment, Health Care , Prospective Studies
13.
Prenat Diagn ; 39(6): 464-470, 2019 05.
Article in English | MEDLINE | ID: mdl-30896039

ABSTRACT

OBJECTIVES: Congenital heart defects (CHDs) may be isolated or associated with other malformations. The use of chromosome microarray (CMA) can increase the genetic diagnostic yield for CHDs by between 4% and 10%. The objective of this study was to evaluate the value of CMA after the prenatal diagnosis of an isolated CHD. METHODS: In a retrospective, nationwide study performed in France, we collected data on all cases of isolated CHD that had been explored using CMAs in 2015. RESULTS: A total of 239 fetuses were included and 33 copy number variations (CNVs) were reported; 19 were considered to be pathogenic, six were variants of unknown significance, and eight were benign variants. The anomaly detection rate was 10.4% overall but ranged from 0% to 16.7% as a function of the isolated CHD in question. The known CNVs were 22q11.21 deletions (n = 10), 22q11.21 duplications (n = 2), 8p23 deletions (n = 2), an Alagille syndrome (n = 1), and a Kleefstra syndrome (n = 1). CONCLUSION: The additional diagnostic yield was clinically significant (3.1%), even when anomalies in the 22q11.21 region were not taken into account. Hence, patients with a suspected isolated CHD and a normal karyotype must be screened for chromosome anomalies other than 22q11.21 duplications and deletions.


Subject(s)
Genetic Testing/methods , Heart Defects, Congenital/genetics , Microarray Analysis/methods , Prenatal Diagnosis/methods , Adult , Chromosome Aberrations , Chromosomes/chemistry , Chromosomes/genetics , Comparative Genomic Hybridization/methods , DNA Copy Number Variations , Female , Fetus/chemistry , Fetus/metabolism , France , Heart Defects, Congenital/diagnosis , Humans , Karyotyping , Pregnancy , Retrospective Studies , Syndrome
14.
J Med Genet ; 55(6): 359-371, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29618507

ABSTRACT

The Xq28 duplication involving the MECP2 gene (MECP2 duplication) has been mainly described in male patients with severe developmental delay (DD) associated with spasticity, stereotypic movements and recurrent infections. Nevertheless, only a few series have been published. We aimed to better describe the phenotype of this condition, with a focus on morphological and neurological features. Through a national collaborative study, we report a large French series of 59 affected males with interstitial MECP2 duplication. Most of the patients (93%) shared similar facial features, which evolved with age (midface hypoplasia, narrow and prominent nasal bridge, thick lower lip, large prominent ears), thick hair, livedo of the limbs, tapered fingers, small feet and vasomotor troubles. Early hypotonia and global DD were constant, with 21% of patients unable to walk. In patients able to stand, lower limbs weakness and spasticity led to a singular standing habitus: flexion of the knees, broad-based stance with pseudo-ataxic gait. Scoliosis was frequent (53%), such as divergent strabismus (76%) and hypermetropia (54%), stereotypic movements (89%), without obvious social withdrawal and decreased pain sensitivity (78%). Most of the patients did not develop expressive language, 35% saying few words. Epilepsy was frequent (59%), with a mean onset around 7.4 years of age, and often (62%) drug-resistant. Other medical issues were frequent: constipation (78%), and recurrent infections (89%), mainly lung. We delineate the clinical phenotype of MECP2 duplication syndrome in a large series of 59 males. Pulmonary hypertension appeared as a cause of early death in these patients, advocating its screening early in life.


Subject(s)
Exotropia/genetics , Hypertension, Pulmonary/genetics , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosomes, Human, X/genetics , Developmental Disabilities/complications , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Epilepsy/complications , Epilepsy/genetics , Epilepsy/physiopathology , Exotropia/complications , Exotropia/physiopathology , France/epidemiology , Humans , Hyperopia/complications , Hyperopia/genetics , Hyperopia/physiopathology , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/physiopathology , Infant , Intellectual Disability/complications , Intellectual Disability/physiopathology , Male , Mental Retardation, X-Linked/complications , Mental Retardation, X-Linked/physiopathology , Pedigree , Phenotype , Somatosensory Disorders/genetics , Somatosensory Disorders/physiopathology , Stereotypic Movement Disorder/complications , Stereotypic Movement Disorder/genetics , Stereotypic Movement Disorder/physiopathology , Young Adult
15.
Hum Mutat ; 37(12): 1329-1339, 2016 12.
Article in English | MEDLINE | ID: mdl-27363716

ABSTRACT

Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next-generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.


Subject(s)
Fibroblast Growth Factors/genetics , Holoprosencephaly/genetics , Mutation , Female , Genetic Predisposition to Disease , Hedgehog Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Receptor, Fibroblast Growth Factor, Type 1 , Sequence Analysis, DNA/methods , Signal Transduction
16.
Genet Med ; 18(1): 49-56, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25790162

ABSTRACT

PURPOSE: Treacher Collins/Franceschetti syndrome (TCS; OMIM 154500) is a disorder of craniofacial development belonging to the heterogeneous group of mandibulofacial dysostoses. TCS is classically characterized by bilateral mandibular and malar hypoplasia, downward-slanting palpebral fissures, and microtia. To date, three genes have been identified in TCS:,TCOF1, POLR1D, and POLR1C. METHODS: We report a clinical and extensive molecular study, including TCOF1, POLR1D, POLR1C, and EFTUD2 genes, in a series of 146 patients with TCS. Phenotype-genotype correlations were investigated for 19 clinical features, between TCOF1 and POLR1D, and the type of mutation or its localization in the TCOF1 gene. RESULTS: We identified 92/146 patients (63%) with a molecular anomaly within TCOF1, 9/146 (6%) within POLR1D, and none within POLR1C. Among the atypical negative patients (with intellectual disability and/or microcephaly), we identified four patients carrying a mutation in EFTUD2 and two patients with 5q32 deletion encompassing TCOF1 and CAMK2A in particular. Congenital cardiac defects occurred more frequently among patients with TCOF1 mutation (7/92, 8%) than reported in the literature. CONCLUSION: Even though TCOF1 and POLR1D were associated with extreme clinical variability, we found no phenotype-genotype correlation. In cases with a typical phenotype of TCS, 6/146 (4%) remained with an unidentified molecular defect.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Mandibulofacial Dysostosis/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Adolescent , Adult , Amino Acid Sequence , Base Sequence , Child , Female , Genetic Association Studies , Humans , Male , Mandibulofacial Dysostosis/diagnosis , Microcephaly/genetics , Middle Aged , Molecular Sequence Data , Mutation , Peptide Elongation Factors/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , Sequence Deletion , Young Adult
17.
Am J Med Genet A ; 170A(1): 116-29, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26420639

ABSTRACT

Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment.


Subject(s)
Brain Diseases/genetics , Chromosomes, Human, X/genetics , Gene Duplication , Magnetic Resonance Imaging/methods , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Adolescent , Adult , Brain Diseases/pathology , Child , Child, Preschool , Female , Genetic Association Studies , Genotype , Humans , Infant , Infant, Newborn , Male , Mental Retardation, X-Linked/pathology , Middle Aged , Pedigree , Phenotype , Prognosis , Young Adult
18.
Neurobiol Dis ; 80: 80-92, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26007637

ABSTRACT

Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density. Here, we have analyzed the phenotype of 7 patients carrying the p.A294V mutation located on the S6 segment of the Kv7.2 pore domain (Kv7.2(A294V)). We investigated the functional and subcellular consequences of this mutation and compared it to another mutation (Kv7.2(A294G)) associated with a benign epilepsy and affecting the same residue. We report that all the patients carrying the p.A294V mutation presented the clinical and EEG characteristics of EOEE. In CHO cells, the total expression of Kv7.2(A294V) alone, assessed by western blotting, was only 20% compared to wild-type. No measurable current was recorded in CHO cells expressing Kv7.2(A294V) channel alone. Although the total Kv7.2(A294V) expression was rescued to wild-type levels in cells co-expressing the Kv7.3 subunit, the global current density was still reduced by 83% compared to wild-type heteromeric channel. In a configuration mimicking the patients' heterozygous genotype i.e., Kv7.2(A294V)/Kv7.2/Kv7.3, the global current density was reduced by 30%. In contrast to Kv7.2(A294V), the current density of homomeric Kv7.2(A294G) was not significantly changed compared to wild-type Kv7.2. However, the current density of Kv7.2(A294G)/Kv7.2/Kv7.3 and Kv7.2(A294G)/Kv7.3 channels were reduced by 30% and 50% respectively, compared to wild-type Kv7.2/Kv7.3. In neurons, the p.A294V mutation induced a mislocalization of heteromeric mutant channels to the somato-dendritic compartment, while the p.A294G mutation did not affect the localization of the heteromeric channels to the axon initial segment. We conclude that this position is a hotspot of mutation that can give rise to a severe or a benign epilepsy. The p.A294V mutation does not exert a dominant-negative effect on wild-type subunits but alters the preferential axonal targeting of heteromeric Kv7 channels. Our data suggest that the disease severity is not necessarily a consequence of a strong inhibition of M current and that additional mechanisms such as abnormal subcellular distribution of Kv7 channels could be determinant.


Subject(s)
Brain/physiopathology , Epilepsy/genetics , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/physiology , Animals , Brain/metabolism , CHO Cells , Cells, Cultured , Cricetulus , Epilepsy/diagnosis , Epilepsy/physiopathology , Hippocampus/metabolism , Humans , KCNQ2 Potassium Channel/metabolism , Mutation , Neurons/metabolism , Phenotype
19.
Am J Med Genet A ; 167A(12): 3046-53, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26385851

ABSTRACT

Ductal plate malformations (DPM) present with a wide phenotypic spectrum comprising Von Meyenburg complexes (VMC), Caroli disease (CD), Caroli syndrome (CS), and autosomal recessive polycystic kidney disease (ARPKD). Variants in PKHD1 are responsible for ARPKD and CS with a high inter- and intra-familial phenotypic variability. Rare familial cases of CD had been reported and exceptional cases of CD are associated with PKHD1 variants. In a family of three siblings presenting with a wide spectrum of severity of DPM, we performed whole exome sequencing and identified two PKHD1 compound heterozygous variants (c.10444G>A; p.Arg3482Cys and c.5521C>T; p.Glu1841Lys), segregating with the symptoms. Two compound heterozygous PKHD1 variants, including one hypomorphic variant, were identified in two other familial cases of DPM with at least one patient presenting with CD. This report widens the phenotypic variability of PKHD1 variants to VMC, and others hepatic bile ducts malformations with inconstant renal phenotype in adults and highlights the important intra-familial phenotypic variability. It also showed that PKHD1 might be a major gene for CD. This work adds an example of the contribution of exome sequencing, not only in the discovery of new genes but also in expanding the phenotypic spectrum of well-known disease-associated genes, using reverse phenotyping.


Subject(s)
Bile Duct Diseases/genetics , Bile Ducts, Intrahepatic/abnormalities , Mutation/genetics , Polycystic Kidney, Autosomal Recessive/genetics , Receptors, Cell Surface/genetics , Adult , Bile Duct Diseases/pathology , Bile Ducts, Intrahepatic/embryology , Bile Ducts, Intrahepatic/pathology , Child , Exome/genetics , Female , Genetic Predisposition to Disease , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pedigree , Phenotype , Polycystic Kidney, Autosomal Recessive/pathology , Prognosis , Young Adult
20.
Mol Genet Metab ; 110(3): 263-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24090707

ABSTRACT

Creatine and guanidinoacetate are biomarkers of creatine metabolism. Their assays in body fluids may be used for detecting patients with primary creatine deficiency disorders (PCDD), a class of inherited diseases. Their laboratory values in blood and urine may vary with age, requiring that reference normal values are given within the age range. Despite the long known role of creatine for muscle physiology, muscle signs are not necessarily the major complaint expressed by PCDD patients. These disorders drastically affect brain function inducing, in patients, intellectual disability, autistic behavior and other neurological signs (delays in speech and language, epilepsy, ataxia, dystonia and choreoathetosis), being a common feature the drop in brain creatine content. For this reason, screening of PCDD patients has been repeatedly carried out in populations with neurological signs. This report is aimed at providing reference laboratory values and related age ranges found for a large scale population of patients with neurological signs (more than 6 thousand patients) previously serving as a background population for screening French patients with PCDD. These reference laboratory values and age ranges compare rather favorably with literature values for healthy populations. Some differences are also observed, and female participants are discriminated from male participants as regards to urine but not blood values including creatine on creatinine ratio and guanidinoacetate on creatinine ratio values. Such gender differences were previously observed in healthy populations; they might be explained by literature differential effects of testosterone and estrogen in adolescents and adults, and by estrogen effects in prepubertal age on SLC6A8 function. Finally, though they were acquired on a population with neurological signs, the present data might reasonably serve as reference laboratory values in any future medical study exploring abnormalities of creatine metabolism and transport.


Subject(s)
Creatine/metabolism , Glycine/analogs & derivatives , White People , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/metabolism , Case-Control Studies , Child , Child, Preschool , Creatine/blood , Creatine/urine , Female , France , Glycine/blood , Glycine/metabolism , Glycine/urine , Humans , Infant , Infant, Newborn , Male , Middle Aged , Reference Values , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL