Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Dev Dyn ; 251(10): 1741-1753, 2022 10.
Article in English | MEDLINE | ID: mdl-35538612

ABSTRACT

BACKGROUND: Microtubule-associated proteins regulate the dynamics, organization, and function of microtubules, impacting a number of vital cellular processes. CRMPs have been shown to control microtubule assembly and axon outgrowth during neuronal differentiation. While many microtubule-associated proteins have been linked to roles in cell division and neuronal development, it is still unclear the complement that control the formation of parallel microtubule arrays in epithelial cells. RESULTS: Here we show through time-lapse DIC microscopy that Caenorhabditis elegans embryos homozygous for the weak loss-of-function allele unc-33(e204) progress more slowly through epidermal morphogenesis, while animals homozygous for strong loss-of-function alleles exhibit more embryonic lethality. Identification of two novel missense mutations in unc-33(e572), Val476Gly, and Ser731Thr, lead to computational approaches to determine the potential effects of these changes on UNC-33/CRMP structure. Molecular dynamics simulations show that for Asp389Asn and Arg502His, two other known missense mutations, local changes in protein-protein hydrogen bonding affect the stability of the protein. However, the Val476Gly/Ser731Thr combination does not alter the structure or energetics of UNC-33 drastically when compared to the wild-type protein. CONCLUSIONS: These results support a novel role for UNC-33/CRMP in C. elegans epidermal development and shed light on how individual amino acid changes cause a loss-of-function in UNC-33.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Alleles , Amino Acids/genetics , Amino Acids/metabolism , Animals , Axons/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Morphogenesis/genetics , Mutation , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism
2.
Res Sq ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38746248

ABSTRACT

The expression of a synthetic chimeric antigen receptor (CAR) to redirect antigen specificity of T cells is transforming the treatment of hematological malignancies and autoimmune diseases [1-7]. In cancer, durable efficacy is frequently limited by the escape of tumors that express low levels or lack the target antigen [8-12]. These clinical results emphasize the need for immune receptors that combine high sensitivity and multispecificity to improve outcomes. Current mono- and bispecific CARs do not faithfully recapitulate T cell receptor (TCR) function and require high antigen levels on tumor cells for recognition [13-17]. Here, we describe a novel synthetic chimeric TCR (ChTCR) that exhibits superior antigen sensitivity and is readily adapted for bispecific targeting. Bispecific ChTCRs mimic TCR structure, form classical immune synapses, and exhibit TCR-like proximal signaling. T cells expressing Bi-ChTCRs more effectively eliminated tumors with heterogeneous antigen expression in vivo compared to T cells expressing optimized bispecific CARs. The Bi-ChTCR architecture is resilient and can be designed to target multiple B cell lineage and multiple myeloma antigens. Our findings identify a broadly applicable approach for engineering T cells to target hematologic malignancies with heterogeneous antigen expression, thereby overcoming the most frequent mechanism of relapse after current CAR T therapies.

3.
Science ; 370(6513): 241-247, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32855215

ABSTRACT

Recent outbreaks of Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have exposed our limited therapeutic options for such diseases and our poor understanding of the cellular mechanisms that block viral infections. Using a transposon-mediated gene-activation screen in human cells, we identify that the major histocompatibility complex (MHC) class II transactivator (CIITA) has antiviral activity against EBOV. CIITA induces resistance by activating expression of the p41 isoform of invariant chain CD74, which inhibits viral entry by blocking cathepsin-mediated processing of the Ebola glycoprotein. We further show that CD74 p41 can block the endosomal entry pathway of coronaviruses, including SARS-CoV-2. These data therefore implicate CIITA and CD74 in host defense against a range of viruses, and they identify an additional function of these proteins beyond their canonical roles in antigen presentation.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/physiology , Betacoronavirus/physiology , Coronavirus Infections/immunology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/immunology , Histocompatibility Antigens Class II/physiology , Host-Pathogen Interactions/immunology , Nuclear Proteins/physiology , Pneumonia, Viral/immunology , Trans-Activators/physiology , Virus Internalization , Antigens, Differentiation, B-Lymphocyte/genetics , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , DNA Transposable Elements , Endosomes/virology , Genetic Testing , Hemorrhagic Fever, Ebola/virology , Histocompatibility Antigens Class II/genetics , Host-Pathogen Interactions/genetics , Humans , Nuclear Proteins/genetics , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Trans-Activators/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL