Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Science ; 362(6418): 1064-1069, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30361383

ABSTRACT

Limited proteolysis of gasdermin D (GSDMD) generates an N-terminal pore-forming fragment that controls pyroptosis in macrophages. GSDMD is processed via inflammasome-activated caspase-1 or -11. It is currently unknown whether macrophage GSDMD can be processed by other mechanisms. Here, we describe an additional pathway controlling GSDMD processing. The inhibition of TAK1 or IκB kinase (IKK) by the Yersinia effector protein YopJ elicits RIPK1- and caspase-8-dependent cleavage of GSDMD, which subsequently results in cell death. GSDMD processing also contributes to the NLRP3 inflammasome-dependent release of interleukin-1ß (IL-1ß). Thus, caspase-8 acts as a regulator of GSDMD-driven cell death. Furthermore, this study establishes the importance of TAK1 and IKK activity in the control of GSDMD cleavage and cytotoxicity.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Caspase 8/metabolism , Host-Pathogen Interactions , I-kappa B Kinase/metabolism , MAP Kinase Kinase Kinases/metabolism , Plague/immunology , Animals , Bacterial Proteins/metabolism , Caspase 8/genetics , Cell Death , Humans , Inflammasomes/immunology , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Plague/enzymology , Plague/pathology , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL