Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 119(41): e2205272119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191217

ABSTRACT

Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.


Subject(s)
Archaeology , Military Personnel , Archaeology/methods , Europe , Greece , History, Ancient , Humans , Warfare
2.
Nat Cell Biol ; 26(1): 153-167, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38182825

ABSTRACT

In the mammalian liver, hepatocytes exhibit diverse metabolic and functional profiles based on their location within the liver lobule. However, it is unclear whether this spatial variation, called zonation, is governed by a well-defined gene regulatory code. Here, using a combination of single-cell multiomics, spatial omics, massively parallel reporter assays and deep learning, we mapped enhancer-gene regulatory networks across mouse liver cell types. We found that zonation affects gene expression and chromatin accessibility in hepatocytes, among other cell types. These states are driven by the repressors TCF7L1 and TBX3, alongside other core hepatocyte transcription factors, such as HNF4A, CEBPA, FOXA1 and ONECUT1. To examine the architecture of the enhancers driving these cell states, we trained a hierarchical deep learning model called DeepLiver. Our study provides a multimodal understanding of the regulatory code underlying hepatocyte identity and their zonation state that can be used to engineer enhancers with specific activity levels and zonation patterns.


Subject(s)
Deep Learning , Multiomics , Mice , Animals , Gene Regulatory Networks , Liver/metabolism , Hepatocytes , Mammals
3.
Mol Ther ; 20(1): 230-8, 2012 01.
Article in English | MEDLINE | ID: mdl-21952171

ABSTRACT

The safety and efficacy of hematopoietic stem cell (HSC) mobilization was investigated in adult splenectomized (SPL) and non-SPL patients with thalassemia major, in two clinical trials, using different mobilization modes: granulocyte-colony-stimulating factor (G-CSF)-alone, G-CSF following pretreatment with hydroxyurea (HU), plerixafor-alone. G-CSF-mobilization was both safe and effective in non-SPL patients. However, in SPL patients the procedure resulted in excessive response to G-CSF, expressed as early hyperleukocytosis necessitating significant dose reduction, and suboptimal CD34(+) cells yields. One-month HU-pretreatment prevented hyperleukocytosis and allowed successful CD34(+) cell collections when an optimal washout period was maintained, but it significantly prolonged the mobilization procedure. Plerixafor resulted in rapid and effective mobilization in both SPL and non-SPL patients and was well-tolerated. For gene therapy of thalassemia, G-CSF or Plerixafor could be used as mobilization agents in non-SPL patients whereas Plerixafor appears to be the mobilization agent of choice in SPL adult thalassemics in terms of safety and efficacy.


Subject(s)
Genetic Therapy , Granulocyte Colony-Stimulating Factor/therapeutic use , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation , Heterocyclic Compounds/therapeutic use , Splenectomy , beta-Thalassemia/therapy , Adult , Antigens, CD34/metabolism , Benzylamines , Cyclams , Female , Granulocyte Colony-Stimulating Factor/adverse effects , Humans , Hydroxyurea/therapeutic use , Immunophenotyping , Leukocyte Count , Leukocytosis/etiology , Male , Splenectomy/adverse effects , Treatment Outcome , Young Adult
4.
Cancers (Basel) ; 15(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38136421

ABSTRACT

Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.

5.
Cancers (Basel) ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37046597

ABSTRACT

T-cell-based, personalized immunotherapy can nowadays be considered the mainstream treatment for certain blood cancers, with a high potential for expanding indications. Chimeric antigen receptor T cells (CAR-Ts), an ex vivo genetically modified T-cell therapy product redirected to target an antigen of interest, have achieved unforeseen successes in patients with B-cell hematologic malignancies. Frequently, however, CAR-T cell therapies fail to provide durable responses while they have met with only limited success in treating solid cancers because unique, unaddressed challenges, including poor persistence, impaired trafficking to the tumor, and site penetration through a hostile microenvironment, impede their efficacy. Increasing evidence suggests that CAR-Ts' in vivo performance is associated with T-cell intrinsic features that may be epigenetically altered or dysregulated. In this review, we focus on the impact of epigenetic regulation on T-cell differentiation, exhaustion, and tumor infiltration and discuss how epigenetic reprogramming may enhance CAR-Ts' memory phenotype, trafficking, and fitness, contributing to the development of a new generation of potent CAR-T immunotherapies.

6.
Hum Gene Ther Methods ; 25(6): 317-27, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25333506

ABSTRACT

High numbers of genetically modified hematopoietic stem cells (HSCs) equipped with enhanced engrafting potential are required for successful stem cell gene therapy. By using thalassemia as a model, we investigated the functional properties of hematopoietic stem and progenitor cells (HSPCs) from Hbb(th3)/45.2(+) mice after mobilization with G-CSF, plerixafor, or G-CSF+plerixafor and the engraftment kinetics of primed cells after competitive primary and noncompetitive secondary transplantation. G-CSF+plerixafor yielded the highest numbers of HSPCs, while G-CSF+plerixafor-mobilized Hbb(th3)/45.2(+) cells, either unmanipulated or transduced with a reporter vector, achieved faster hematologic reconstitution and higher levels of donor chimerism over all other types of mobilized cells, after competitive transplantation to B6.BoyJ/45.1(+) recipients. The engraftment benefit observed in the G-CSF+plerixafor group was attributed to the more primitive stem cell phenotype of G-CSF+plerixafor-LSK cells, characterized by higher CD150(+)/CD48 expression. Moreover, secondary G-CSF+plerixafor recipients displayed stable or even higher chimerism levels as compared with primary engrafted mice, thus maintaining or further improving engraftment levels over G-CSF- or plerixafor-secondary recipients. Plerixafor-primed cells displayed the lowest competiveness over all other mobilized cells after primary or secondary transplantation, probably because of the higher frequency of more actively proliferating LK cells. Overall, the higher HSC yields, the faster hematological recovery, and the superiority in long-term engraftment indicate G-CSF+plerixafor-mobilized blood as an optimal graft source, not only for thalassemia gene therapy, but also for stem cell gene therapy applications in general.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation , Heterocyclic Compounds/pharmacology , Recombinant Proteins/pharmacology , beta-Thalassemia/therapy , Animals , Antigens, Differentiation/analysis , Benzylamines , Cell Cycle , Cell Survival , Combined Modality Therapy , Cyclams , Disease Models, Animal , Genes, Reporter , Genetic Vectors , Graft Survival , Lentivirus , Mice , Mice, Mutant Strains , Radiation Chimera , Splenectomy , Transplantation Chimera , beta-Thalassemia/genetics , beta-Thalassemia/surgery
7.
Hum Gene Ther ; 21(3): 299-310, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19795976

ABSTRACT

Granulocyte colony-stimulating factor (G-CSF)-mobilized blood stem cells may become the preferable source of hematopoietic stem cells (HSCs) for gene therapy because of the higher yield of cells compared with conventional bone marrow harvesting. A G-CSF-associated risk of splenic rupture has been recognized in normal donors of HSCs, but limited information is available about the G-CSF effect in the presence of splenomegaly and extramedullary hematopoiesis. We investigated the G-CSF effect in a thalassemic mouse model (HBB(th-3)) as compared with a normal strain (C57BL/6), in terms of safety, mobilization efficacy, and distribution of stem cells among hematopoietic compartments. There was no death or clinical sequelae of splenic rupture in G-CSF-treated animals of either strain; however, hemorrhagic infarcts in the spleen were detected with low frequency in G-CSF-treated HBB(th-3) mice (12.5%). HBB(th-3) mice mobilized less effectively than C57BL/6 mice (Lin(-)Sca-1(+)c-Kit(+) cells/microl of peripheral blood mononuclear cells [PBMCs]: 90 +/- 55 vs. 255 +/- 174, respectively, p = 0.01; CFU-GM/ml PBMCs: 390 +/- 262 vs. 1131 +/- 875, p = 0.01) because of increased splenic trapping of hematopoietic stem and progenitor cells (Lin(-)Sca-1(+)c-Kit(+) cells per spleen (x10(5)): 487 +/- 35 vs. 109 +/- 19.6, p = 0.01; CFU-GM per spleen (x10(2)): 1470 +/- 347 vs. 530 +/- 425, p = 0.0006). Splenectomy restored the mobilization proficiency of thalassemic mice at comparable levels to normal mice and resulted in the development of a hematopoietic compensatory mechanism in the thalassemic liver that protected splenectomized mice from severe anemia. Our data imply that, in view of human gene therapy for thalassemia, either multiple cycles or alternative ways of mobilization may be required for a sufficient yield of transplantable HSCs. In addition, strategies to minimize the risk of G-CSF-induced splenic infarcts should be explored in a clinical setting.


Subject(s)
Genetic Therapy , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/metabolism , Thalassemia/therapy , Animals , Disease Models, Animal , Flow Cytometry , Hematopoietic Stem Cell Transplantation , Hemoglobins/physiology , Humans , Immunoenzyme Techniques , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins , Spleen/metabolism , Spleen/pathology , Splenectomy , Thalassemia/genetics , Thalassemia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL