Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 118(23): 237204, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644667

ABSTRACT

Nuclear resonant x-ray diffraction in grazing incidence geometry is used to determine the lateral magnetic configuration in a one-dimensional lattice of ferromagnetic nanostripes. During magnetic reversal, strong nuclear superstructure diffraction peaks appear in addition to the electronic ones due to an antiferromagnetic order in the nanostripe lattice. We show that the analysis of the angular distribution together with the time dependence of the resonantly diffracted x rays reveals surface spin structures with very high sensitivity. This scattering technique provides unique access to laterally correlated spin configurations in magnetically ordered nanostructures and, in perspective, also to their dynamics.

2.
Am J Physiol Heart Circ Physiol ; 303(8): H931-9, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22886416

ABSTRACT

MicroRNAs (miRNAs) are small sequences of noncoding RNAs that regulate gene expression by two basic processes: direct degradation of mRNA and translation inhibition. miRNAs are key molecules in gene regulation for embryonic stem cells, since they are able to repress target pluripotent mRNA genes, including Oct4, Sox2, and Nanog. miRNAs are unlike other small noncoding RNAs in their biogenesis, since they derive from precursors that fold back to form a distinctive hairpin structure, whereas other classes of small RNAs are formed from longer hairpins or bimolecular RNA duplexes (siRNAs) or precursors without double-stranded character (piRNAs). An increasing amount of evidence suggests that miRNAs may have a critical role in the maintenance of the pluripotent cell state and in the regulation of early mammalian development. This review gives an overview of the current state of the art of miRNA expression and regulation in embryonic stem cell differentiation. Current insights on controlling stem cell fate toward mesodermal, endodermal and ectodermal differentiation, and cell reprogramming are also highlighted.


Subject(s)
Cardiovascular Physiological Phenomena , Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , MicroRNAs/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL