Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Nano Lett ; 23(21): 9740-9747, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37879097

ABSTRACT

Exciton localization through nanoscale strain has been used to create highly efficient single-photon emitters (SPEs) in 2D materials. However, the strong Coulomb interactions between excitons can lead to nonradiative recombination through exciton-exciton annihilation, negatively impacting SPE performance. Here, we investigate the effect of Coulomb interactions on the brightness, single photon purity, and operating temperatures of strain-localized GaSe SPEs by using electrostatic doping. By gating GaSe to the charge neutrality point, the exciton-exciton annihilation nonradiative pathway is suppressed, leading to ∼60% improvement of emission intensity and an enhancement of the single photon purity g(2)(0) from 0.55 to 0.28. The operating temperature also increased from 4.5 K to 85 K consequently. This research provides insight into many-body interactions in excitons confined by nanoscale strain and lays the groundwork for the optimization of SPEs for optoelectronics and quantum photonics.

2.
Nano Lett ; 21(2): 931-937, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33405934

ABSTRACT

We report here details of steady-state and time-resolved spectroscopy of excitonic dynamics for Janus transition metal dichalcogenide monolayers, including MoSSe and WSSe, which were synthesized by low-energy implantation of Se into transition metal disulfides. Absorbance and photoluminescence spectroscopic measurements determined the room-temperature exciton resonances for MoSSe and WSSe monolayers. Transient absorption measurements revealed that the excitons in Janus structures form faster than those in pristine transition metal dichalcogenides by about 30% due to their enhanced electron-phonon interaction by the built-in dipole moment. By combining steady-state photoluminescence quantum yield and time-resolved transient absorption measurements, we find that the exciton radiative recombination lifetime in Janus structures is significantly longer than in their pristine samples, supporting the predicted spatial separation of the electron and hole wave functions due to the built-in dipole moment. These results provide fundamental insight in the optical properties of Janus transition metal dichalcogenides.

3.
Nano Lett ; 21(17): 7419-7425, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34314183

ABSTRACT

Many-body localization (MBL) has attracted significant attention because of its immunity to thermalization, role in logarithmic entanglement entropy growth, and opportunities to reach exotic quantum orders. However, experimental realization of MBL in solid-state systems has remained challenging. Here, we report evidence of a possible phonon MBL phase in disordered GaAs/AlAs superlattices. Through grazing-incidence inelastic X-ray scattering, we observe a strong deviation of the phonon population from equilibrium in samples doped with ErAs nanodots at low temperature, signaling a departure from thermalization. This behavior occurs within finite phonon energy and wavevector windows, suggesting a localization-thermalization crossover. We support our observation by proposing a theoretical model for the effective phonon Hamiltonian in disordered superlattices, and showing that it can be mapped exactly to a disordered 1D Bose-Hubbard model with a known MBL phase. Our work provides momentum-resolved experimental evidence of phonon localization, extending the scope of MBL to disordered solid-state systems.


Subject(s)
Models, Theoretical , Phonons
4.
J Am Chem Soc ; 142(41): 17499-17507, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32942848

ABSTRACT

Interlayer coupling plays essential roles in the quantum transport, polaritonic, and electrochemical properties of stacked van der Waals (vdW) materials. In this work, we report the unconventional interlayer coupling in vdW heterostructures (HSs) by utilizing an emerging 2D material, Janus transition metal dichalcogenides (TMDs). In contrast to conventional TMDs, monolayer Janus TMDs have two different chalcogen layers sandwiching the transition metal and thus exhibit broken mirror symmetry and an intrinsic vertical dipole moment. Such a broken symmetry is found to strongly enhance the vdW interlayer coupling by as much as 13.2% when forming MoSSe/MoS2 HS as compared to the pristine MoS2 counterparts. Our noncontact ultralow-frequency Raman probe, linear chain model, and density functional theory calculations confirm the enhancement and reveal the origins as charge redistribution in Janus MoSSe and reduced interlayer distance. Our results uncover the potential of tuning interlayer coupling strength through Janus heterostacking.

5.
Small ; : e2004047, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33090682

ABSTRACT

Molybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non-equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self-supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst. The as-synthesized architectures have a disordered nanocrystalline structure, with nanodomains of bent, defective S-Mo-S layers embedded in an amorphous matrix, with excess sulfur and segregated molybdenum particles. Oxygen incorporation in this structure fosters the creation of amorphous oxide/oxysulfide nanophases with high electrical conductivity, enabling fast electron transfer to the active sites. The combined effect of the nanocrystalline pristine structure and the surface oxidation enhances the performance leading to small overpotentials, very fast kinetics (35.1 mV dec-1 Tafel slope) and remarkable long-term stability for continuous operation up to -1 A cm-2. This work shows possible new avenues in catalytic design arising from a non-equilibrium technique as PLD and the importance of structural and chemical control to improve the HER performance of MoS-based catalysts.

6.
Nat Mater ; 23(3): 308-309, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37580370
7.
J Am Chem Soc ; 141(22): 8928-8936, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31090414

ABSTRACT

The failure to achieve stable Ohmic contacts in two-dimensional material devices currently limits their promised performance and integration. Here we demonstrate that a phase transformation in a region of a layered semiconductor, PdSe2, can form a contiguous metallic Pd17Se15 phase, leading to the formation of seamless Ohmic contacts for field-effect transistors. This phase transition is driven by defects created by exposure to an argon plasma. Cross-sectional scanning transmission electron microscopy is combined with theoretical calculations to elucidate how plasma-induced Se vacancies mediate the phase transformation. The resulting Pd17Se15 phase is stable and shares the same native chemical bonds with the original PdSe2 phase, thereby forming an atomically sharp Pd17Se15/PdSe2 interface. These Pd17Se15 contacts exhibit a low contact resistance of ∼0.75 kΩ µm and Schottky barrier height of ∼3.3 meV, enabling nearly a 20-fold increase of carrier mobility in PdSe2 transistors compared to that of traditional Ti/Au contacts. This finding opens new possibilities in the development of better electrical contacts for practical applications of 2D materials.

8.
Biophys J ; 114(11): 2498-2506, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29874601

ABSTRACT

We show that DNA carrying 5-methylcytosine modifications or methylated DNA (m-DNA) can be distinguished from DNA with unmodified cytosine by Raman spectroscopy enhanced by both a bowtie nanoantenna and excitation resonance. In particular, m-DNA can be identified by a peak near 1000 cm-1 and changes in the Raman peaks in the 1200-1700 cm-1 band that are enhanced by the ring-absorption resonance. The identification is robust to the use of resonance Raman and nanoantenna excitation used to obtain significant signal improvement. The primary differences are three additional Raman peaks with methylation at 1014, 1239, and 1639 cm-1 and spectral intensity inversion at 1324 (C5=C6) and 1473 cm-1 (C4=N3) in m-DNA compared to that of DNA with unmodified cytosine. We attribute this to the proximity of the methyl group to the antenna, which brings the (C5=C6) mode closer to experiencing a stronger near-field enhancement. We also show distinct Raman spectral features attributed to the transition of DNA from a hydrated state, when dissolved, to a dried/denatured state. We observe a general broadening of the larger lines and a transfer of spectral weight from the ∼1470 cm-1 vibration to the two higher-energy lines of the dried m-DNA solution. We attribute the new spectral characteristics to DNA softening under high salt conditions and find that the m-DNA is still distinguishable via the ∼1000 cm-1 peak and distribution of the signal in the 1200-1700 cm-1 band. The nanoantenna gain exceeds 20,000, whereas the real signal ratio is much less because of a low average enhanced region occupancy even with these relatively high DNA concentrations. It is improved when fixed DNA in a salt crystal lies near the nanoantenna. The Raman resonance gain profile is consistent with A-term expectations, and the resonance is found at ∼259 nm excitation wavelength.


Subject(s)
DNA Methylation , Nanotechnology , Spectrum Analysis, Raman , 5-Methylcytosine/metabolism
9.
Nano Lett ; 17(10): 6241-6247, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28876939

ABSTRACT

Electrical contact to low-dimensional (low-D) materials is a key to their electronic applications. Traditional metal contacts to low-D semiconductors typically create gap states that can pin the Fermi level (EF). However, low-D metals possessing a limited density of states at EF can enable gate-tunable work functions and contact barriers. Moreover, a seamless contact with native bonds at the interface, without localized interfacial states, can serve as an optimal electrode. To realize such a seamless contact, one needs to develop atomically precise heterojunctions from the atom up. Here, we demonstrate an all-carbon staircase contact to ultranarrow armchair graphene nanoribbons (aGNRs). The coherent heterostructures of width-variable aGNRs, consisting of 7, 14, 21, and up to 56 carbon atoms across the width, are synthesized by a surface-assisted self-assembly process with a single molecular precursor. The aGNRs exhibit characteristic vibrational modes in Raman spectroscopy. A combined scanning tunneling microscopy and density functional theory study reveals the native covalent-bond nature and quasi-metallic contact characteristics of the interfaces. Our electronic measurements of such seamless GNR staircase constitute a promising first step toward making low resistance contacts.

10.
Nano Lett ; 17(8): 4624-4633, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28692299

ABSTRACT

Nonequilibrium growth pathways for crystalline nanostructures with metastable phases are demonstrated through the gas-phase formation, attachment, and crystallization of ultrasmall amorphous nanoparticles as building blocks in pulsed laser deposition (PLD). Temporally and spatially resolved gated-intensified charge couple device (ICCD) imaging and ion probe measurements are employed as in situ diagnostics to understand and control the plume expansion conditions for the synthesis of nearly pure fluxes of ultrasmall (∼3 nm) amorphous TiO2 nanoparticles in background gases and their selective delivery to substrates. These amorphous nanoparticles assemble into loose, mesoporous assemblies on substrates at room temperature but dynamically crystallize by sequential particle attachment at higher substrate temperatures to grow nanostructures with different phases and morphologies. Molecular dynamics calculations are used to simulate and understand the crystallization dynamics. This work demonstrates that nonequilibrium crystallization by particle attachment of metastable ultrasmall nanoscale "building blocks" provides a versatile approach for exploring and controlling the growth of nanoarchitectures with desirable crystalline phases and morphologies.

11.
J Am Chem Soc ; 139(1): 482-491, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27997212

ABSTRACT

Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this work, we explore a growth-etching-regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60° with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Δµ between Ga and Se. Our growth-etching-regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.

12.
J Am Chem Soc ; 139(9): 3496-3504, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28177621

ABSTRACT

The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence, plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. These previously unobserved properties and layer stackings in WSe2 will be interesting for spintronics and valleytronics.

13.
J Am Chem Soc ; 139(40): 14090-14097, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28873294

ABSTRACT

Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe2 exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from 0 (bulk) to 1.3 eV (monolayer). The Raman-active vibrational modes of PdSe2 were identified using polarized Raman spectroscopy, and a strong interlayer interaction was revealed from large, thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe2 display tunable ambipolar charge carrier conduction with a high electron field-effect mobility of ∼158 cm2 V-1 s-1, indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.

14.
Nano Lett ; 16(2): 1435-44, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26797083

ABSTRACT

van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (<50 cm(-1)) in twisted bilayer MoS2 by Raman spectroscopy and first-principles modeling. Twisting significantly alters the interlayer stacking and coupling, leading to notable frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of ∼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.

15.
Nano Lett ; 16(8): 5213-20, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27416103

ABSTRACT

Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. Here, we demonstrate the growth of MoSe2-x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ∼20%, that exhibit a remarkable transition in electrical transport properties from n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at ∼250 cm(-1) appears, and the A1g Raman characteristic mode at 240 cm(-1) softens toward ∼230 cm(-1) which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. First-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions.

16.
Nano Lett ; 16(4): 2260-7, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26963685

ABSTRACT

Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.

17.
J Am Chem Soc ; 138(44): 14713-14719, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27754655

ABSTRACT

Photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors, i.e., monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions has attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge-transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure for optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS2) and a single layer of cadmium selenide/zinc sulfide core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that, following electron transfer from the 2D to the 0D, hybrid excitons, wherein the electron resides in the 0D and the hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ∼140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.

19.
Anal Chem ; 88(1): 645-52, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26639609

ABSTRACT

Microelectrodes modified with carbon nanotubes (CNTs) are useful for the detection of neurotransmitters because the CNTs enhance sensitivity and have electrocatalytic effects. CNTs can be grown on carbon fiber microelectrodes (CFMEs) but the intrinsic electrochemical activity of carbon fibers makes evaluating the effect of CNT enhancement difficult. Metal wires are highly conductive and many metals have no intrinsic electrochemical activity for dopamine, so we investigated CNTs grown on metal wires as microelectrodes for neurotransmitter detection. In this work, we successfully grew CNTs on niobium substrates for the first time. Instead of planar metal surfaces, metal wires with a diameter of only 25 µm were used as CNT substrates; these have potential in tissue applications due to their minimal tissue damage and high spatial resolution. Scanning electron microscopy shows that aligned CNTs are grown on metal wires after chemical vapor deposition. By use of fast-scan cyclic voltammetry, CNT-coated niobium (CNT-Nb) microelectrodes exhibit higher sensitivity and lower ΔEp value compared to CNTs grown on carbon fibers or other metal wires. The limit of detection for dopamine at CNT-Nb microelectrodes is 11 ± 1 nM, which is approximately 2-fold lower than that of bare CFMEs. Adsorption processes were modeled with a Langmuir isotherm, and detection of other neurochemicals was also characterized, including ascorbic acid, 3,4-dihydroxyphenylacetic acid, serotonin, adenosine, and histamine. CNT-Nb microelectrodes were used to monitor stimulated dopamine release in anesthetized rats with high sensitivity. This study demonstrates that CNT-grown metal microelectrodes, especially CNTs grown on Nb microelectrodes, are useful for monitoring neurotransmitters.


Subject(s)
Dopamine/analysis , Nanotubes, Carbon/chemistry , Neurotransmitter Agents/analysis , Niobium/chemistry , Electrochemical Techniques , Microelectrodes , Particle Size , Surface Properties
20.
Inorg Chem ; 55(18): 9436-44, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27606881

ABSTRACT

Raman spectra were collected on Ni1-xCoxTiO3 (0 ≤ x ≤ 1) ilmenite samples as a function of the temperature between 4 and 1200 K. An evident symmetry lowering from the prototype R3̅ symmetry is observed. The distortion was largest for the x = 0.40 and 0.50 samples and significantly diminished for small and large values of x. The distortion was preserved in the whole temperature range and, except for the x = 0.50 sample, did not show significant changes. Notably, between 25 and 69 K, distortion of the x = 0.40 sample is accompanied by ferromagnetic order. The direct cation-cation and O-mediated indirect interactions are discussed as mechanisms behind the distortion and magnetic order. A reversible order-disorder phase transformation, assigned to occur between the ilmenite and corundum phases, took place at 973 K in the x = 0.50 sample. Completion of the transformation took over 1 h. The role of the overlap of Co/Ni and Ti 3d orbitals through O octahedral faces for charge transfer is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL