Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Contrib Mineral Petrol ; 178(11): 80, 2023.
Article in English | MEDLINE | ID: mdl-38616806

ABSTRACT

The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources (i.e., crust versus mantle), to identify crustal reservoirs that contributed to the felsic magmas during anatexis, and to quantify the contributions of the respective sources. We present a combined zircon oxygen and hafnium isotope and trace element dataset for 16 volcanic units of the two youngest volcanic phases in Patagonia, dated here with LA-ICP-MS U-Pb geochronology at ca. 148-153 Ma (El Quemado Complex, EQC) and ca. 159 Ma (western Chon Aike Formation, WCA). The EQC zircon have 18O-enriched values (δ18O from 7 to 9.5‰) with correspondingly negative initial εHf values (- 2.0 to - 8.0). The WCA zircon have δ18O values between 6 and 7‰ and εHf values ranging between - 4.0 and + 1.5. Binary δ18O-εHf mixing models require an average of 70 and 60% melt derived from partial melting of isotopically distinct metasedimentary basements for the EQC and WCA, respectively. Zircon trace element compositions are consistent with anatexis of sedimentary protoliths derived from LIL-depleted upper continental crustal sources. The overlap between a high heat flux environment (i.e., widespread extension and lithospheric thinning) during supercontinental breakup and a fertile metasedimentary crust was key in producing voluminous felsic volcanism via anatexis following the injection and emplacement of basaltic magmas into the lower crust. Supplementary Information: The online version contains supplementary material available at 10.1007/s00410-023-02065-1.

2.
Contrib Mineral Petrol ; 174(5): 46, 2019.
Article in English | MEDLINE | ID: mdl-31178597

ABSTRACT

The coupled multicomponent diffusion of the species Ca2Si2O6, CaAl2SiO6 and Mg2Si2O6 was determined in diopside crystals in the diopside/anorthite (Di/An) system at temperatures (T) of 1110-1260 °C and oxygen fugacities (fO 2 ) between 1.0 log unit below and above the fayalite-magnetite-quartz equilibrium (FMQ ± 1). Diffusion couples were prepared by the seed overgrowth technique. Element concentration profiles were measured perpendicular to the rim/core interface by step-scanning profiling with a field emission gun scanning electron microscope (FEG-SEM). The multicomponent diffusion matrix was solved by fitting its eigenvalues (λ) and eigenvectors (v) to the measured concentration profiles. The full diffusion matrix D can be recovered by using the formula D = P Λ P - 1 resulting in the following equation: D Di/An = 1.00 - 0.67 - 0.38 1.00 λ 1 T 0 0 λ 2 T 1.00 - 0.67 - 0.38 1.00 - 1 . The eigenvalues (λ1 and λ2) represent upper limit values and are described by the following Arrhenius-type equations: λ 1 Di/An = 10 - 15.98 ± 1.17 × exp - 114.4 ± 32.8 kJ/mol RT , λ 2 Di/An = 10 - 16.23 ± 1.17 × exp - 114.4 ± 32.8 kJ/mol RT , where λ1 and λ2 are the first and second eigenvalue of the diffusion matrix in m2 s-1 , R is the gas constant and T is the temperature in K. The dominant eigenvalue (λ1) is one quarter order of magnitude larger than the second eigenvalue (λ2). The eigenvectors are constant for all experiments inferring that the entire D matrix can be described with the eigenvalues as the only T-dependent parameter. Additionally, the derived diffusion data and modeling approach were applied to constrain the duration of magmatic processes recorded in zoned clinopyroxene (cpx) phenocrysts from a basaltic, post-plutonic dyke of the Tertiary Adamello batholiths (N-Italy). The results reveal residence times of the overgrown cpx prior to final emplacement in the range of 0.25-1.7 years (lower limit values) testifying that the data and method can be applied to model cpx diffusion profiles in complex natural cpx.

SELECTION OF CITATIONS
SEARCH DETAIL