Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cancer ; 22(1): 206, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38093346

ABSTRACT

BACKGROUND: Social behaviors such as altruism, where one self-sacrifices for collective benefits, critically influence an organism's survival and responses to the environment. Such behaviors are widely exemplified in nature but have been underexplored in cancer cells which are conventionally seen as selfish competitive players. This multidisciplinary study explores altruism and its mechanism in breast cancer cells and its contribution to chemoresistance. METHODS: MicroRNA profiling was performed on circulating tumor cells collected from the blood of treated breast cancer patients. Cancer cell lines ectopically expressing candidate miRNA were used in co-culture experiments and treated with docetaxel. Ecological parameters like relative survival and relative fitness were assessed using flow cytometry. Functional studies and characterization performed in vitro and in vivo include proliferation, iTRAQ-mass spectrometry, RNA sequencing, inhibition by small molecules and antibodies, siRNA knockdown, CRISPR/dCas9 inhibition and fluorescence imaging of promoter reporter-expressing cells. Mathematical modeling based on evolutionary game theory was performed to simulate spatial organization of cancer cells. RESULTS: Opposing cancer processes underlie altruism: an oncogenic process involving secretion of IGFBP2 and CCL28 by the altruists to induce survival benefits in neighboring cells under taxane exposure, and a self-sacrificial tumor suppressive process impeding proliferation of altruists via cell cycle arrest. Both processes are regulated concurrently in the altruists by miR-125b, via differential NF-κB signaling specifically through IKKß. Altruistic cells persist in the tumor despite their self-sacrifice, as they can regenerate epigenetically from non-altruists via a KLF2/PCAF-mediated mechanism. The altruists maintain a sparse spatial organization by inhibiting surrounding cells from adopting the altruistic fate via a lateral inhibition mechanism involving a GAB1-PI3K-AKT-miR-125b signaling circuit. CONCLUSIONS: Our data reveal molecular mechanisms underlying manifestation, persistence and spatial spread of cancer cell altruism. A minor population behave altruistically at a cost to itself producing a collective benefit for the tumor, suggesting tumors to be dynamic social systems governed by the same rules of cooperation in social organisms. Understanding cancer cell altruism may lead to more holistic models of tumor evolution and drug response, as well as therapeutic paradigms that account for social interactions. Cancer cells constitute tractable experimental models for fields beyond oncology, like evolutionary ecology and game theory.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Altruism , Phosphatidylinositol 3-Kinases , MicroRNAs/genetics , Breast Neoplasms/genetics
2.
Environ Res ; 232: 116335, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37290620

ABSTRACT

Environmental factors such as exposure to ionizing radiations, certain environmental pollutants, and toxic chemicals are considered as risk factors in the development of breast cancer. Triple-negative breast cancer (TNBC) is a molecular variant of breast cancer that lacks therapeutic targets such as progesterone receptor, estrogen receptor, and human epidermal growth factor receptor-2 which makes the targeted therapy ineffective in TNBC patients. Therefore, identification of new therapeutic targets for the treatment of TNBC and the discovery of new therapeutic agents is the need of the hour. In this study, CXCR4 was found to be highly expressed in majority of breast cancer tissues and metastatic lymph nodes derived from TNBC patients. CXCR4 expression is positively correlated with breast cancer metastasis and poor prognosis of TNBC patients suggesting that suppression of CXCR4 expression could be a good strategy in the treatment of TNBC patients. Therefore, the effect of Z-guggulsterone (ZGA) on the expression of CXCR4 in TNBC cells was examined. ZGA downregulated protein and mRNA expression of CXCR4 in TNBC cells and proteasome inhibition or lysosomal stabilization had no effect on the ZGA-induced CXCR4 reduction. CXCR4 is under the transcriptional control of NF-κB, whereas ZGA was found to downregulate transcriptional activity of NF-κB. Functionally, ZGA downmodulated the CXCL12-driven migration/invasion in TNBC cells. Additionally, the effect of ZGA on growth of tumor was investigated in the orthotopic TNBC mice model. ZGA presented good inhibition of tumor growth and liver/lung metastasis in this model. Western blotting and immunohistochemical analysis indicated a reduction of CXCR4, NF-κB, and Ki67 in tumor tissues. Computational analysis suggested PXR agonism and FXR antagonism as targets of ZGA. In conclusion, CXCR4 was found to be overexpressed in majority of patient-derived TNBC tissues and ZGA abrogated the growth of TNBC tumors by partly targeting the CXCL12/CXCR4 signaling axis.


Subject(s)
Liver Neoplasms , Pregnenediones , Triple Negative Breast Neoplasms , Mice , Animals , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Cell Line, Tumor , Chemokine CXCL12/genetics , Receptors, CXCR4/genetics
3.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674562

ABSTRACT

Idiopathic granulomatous mastitis (IGM) is a rare and benign inflammatory breast disease with ambiguous aetiology. Contrastingly, lactational mastitis (LM) is commonly diagnosed in breastfeeding women. To investigate IGM aetiology, we profiled the microbial flora of pus and skin in patients with IGM and LM. A total of 26 patients with IGM and 6 patients with LM were included in the study. The 16S rRNA sequencing libraries were constructed from 16S rRNA gene amplified from total DNA extracted from pus and skin swabs in patients with IGM and LM controls. Constructed libraries were multiplexed and paired-end sequenced on HiSeq4000. Metagenomic analysis was conducted using modified microbiome abundance analysis suite customised R-resource for paired pus and skin samples. Microbiome multivariable association analyses were performed using linear models. A total of 21 IGM and 3 LM paired pus and skin samples underwent metagenomic analysis. Bray−Curtis ecological dissimilarity distance showed dissimilarity across four sample types (IGM pus, IGM skin, LM pus, and LM skin; PERMANOVA, p < 0.001). No characteristic dominant genus was observed across the IGM samples. The IGM pus samples were more diverse than corresponding IGM skin samples (Shannon and Simpson index; Wilcoxon paired signed-rank tests, p = 0.022 and p = 0.07). Corynebacterium kroppenstedtii, reportedly associated with IGM in the literature, was higher in IGM pus samples than paired skin samples (Wilcoxon, p = 0.022). Three other species and nineteen genera were statistically significant in paired IGM pus−skin comparison after antibiotic treatment adjustment and multiple comparisons correction. Microbial profiles are unique between patients with IGM and LM. Inter-patient variability and polymicrobial IGM pus samples cannot implicate specific genus or species as an infectious cause for IGM.


Subject(s)
Granulomatous Mastitis , Microbiota , Humans , Female , Granulomatous Mastitis/complications , Granulomatous Mastitis/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Immunoglobulin M , Suppuration/complications
4.
FASEB J ; : fj201801167RR, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30183375

ABSTRACT

WW domain binding protein 2 (WBP2), a transcriptional coactivator, plays a vital role in breast tumorigenesis. It positively regulates estrogen receptor, Hippo, and Wnt pathways, which subsequently enhance the transcription of downstream target genes contributing to cancer. Understanding the regulation of the expression and activity of WBP2 oncoprotein has implication in cancer therapy. We have previously reported that WBP2 is regulated at the post-translational and post-transcriptional levels. However, its regulation at the transcriptional level is not known. In this study, the minimal promoter region of WBP2 that is critical for its transcription was identified. The E-box motif in the WBP2 promoter was demonstrated to be essential for its transcription. The E-box binding protein upstream stimulatory factor 1 (USF-1) was discovered to be a key transcription factor for WBP2 by yeast one-hybrid analysis and was validated through reporter and chromatin immunoprecipitation assays and tandem mass spectrometry, which also suggested that USF-1 acts by regulating a network of genes, in addition to WBP2, associated with cell movement, proliferation, cell-cycle, and survival cellular processes. USF-1 is overexpressed in majority of the breast cancer cell lines and tissues tested, and has profound effects on cancer cell proliferation. USF-1-mediated transcription of WBP2 was demonstrated to be inducible by insulin, which led to AKT-mediated phosphorylation of USF-1 that modulated its ability to bind to the WBP2 promoter and activate its transcription. This study sheds new light onto the regulation of the WBP2 oncogene at the transcriptional level by a novel oncogenic transcription factor, USF-1. USF-1 is a potential drug target for treatment of WBP2-positive breast cancer.-Ramos, A., Miow, Q. H., Liang, X., Lin, Q. S., Putti, T. C., Lim, Y. P. Phosphorylation of E-box binding USF-1 by PI3K/AKT enhances its transcriptional activation of the WBP2 oncogene in breast cancer cells.

5.
Gynecol Oncol ; 155(2): 275-279, 2019 11.
Article in English | MEDLINE | ID: mdl-31481248

ABSTRACT

OBJECTIVE: Clinical genetic testing to diagnose germline mutations often requires blood sample or saliva smear from a cancer-affected individual. This rules out testing in families when cancer-affected individuals are deceased. We explored the use of a next-generation sequencing (NGS) platform to diagnose germline pathogenic mutations from tumors. METHODS: Archival tumors (ovarian = 26, breast = 25, others = 9) were retrieved from 60 cancer patients who have undergone multi-gene panel blood testing. Genomic DNA was extracted and sequenced for BRCA1/2 using a NGS platform. 41/60 specimens were sequenced for 5 other genes (APC, ATM, PALB2, PTEN, TP53). Tumor testing and results interpretation were performed blinded to the blood test result. RESULTS: All 38 patients with no BRCA1/2 mutations on blood testing were correctly tested negative on tumor. Tumor testing correctly diagnosed BRCA1/2 pathogenic mutations in 15/22 (68%) patients while in 7/22 (32%) patients, the mutation was either detected but incorrectly classified as VUS (n = 3) or not detected at all (n = 4). Overall concordance rate for tumor and blood testing for BRCA1/2 mutations was 88%, with 0% false positive and 32% false negative rate for pathogenic mutations. Tumor testing correctly diagnosed 1/2 pathogenic germline ATM mutation, 1/1 pathogenic germline PALB2 mutation and 2/2 pathogenic germline TP53 mutations. False positive germline mutations were diagnosed in 4 genes at a rate of 2.4%-10.3% (APC = 2.4%, PALB2 = 2.4%, PTEN = 4.9%, TP53 = 10.3%). CONCLUSION: Tumor testing for BRCA1/2 germline mutations using an NGS platform is fairly reliable with no false positive findings, and correctly diagnosed more than two-thirds of pathogenic germline BRCA1/2 mutations. However, it is not reliable to diagnose pathogenic germline mutations in genes frequently mutated in sporadic cancers, such as PTEN and TP53.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA1/physiology , Genes, BRCA2/physiology , Germ-Line Mutation/genetics , Ovarian Neoplasms/genetics , Adult , Aged , Breast Neoplasms/diagnosis , DNA, Neoplasm/genetics , False Positive Reactions , Female , Humans , Middle Aged , Ovarian Neoplasms/diagnosis , Prospective Studies , Sequence Analysis, DNA , Tumor Suppressor Protein p53/metabolism
8.
Genome Res ; 21(5): 676-87, 2011 May.
Article in English | MEDLINE | ID: mdl-21467264

ABSTRACT

Using a long-span, paired-end deep sequencing strategy, we have comprehensively identified cancer genome rearrangements in eight breast cancer genomes. Herein, we show that 40%-54% of these structural genomic rearrangements result in different forms of fusion transcripts and that 44% are potentially translated. We find that single segmental tandem duplication spanning several genes is a major source of the fusion gene transcripts in both cell lines and primary tumors involving adjacent genes placed in the reverse-order position by the duplication event. Certain other structural mutations, however, tend to attenuate gene expression. From these candidate gene fusions, we have found a fusion transcript (RPS6KB1-VMP1) recurrently expressed in ∼30% of breast cancers associated with potential clinical consequences. This gene fusion is caused by tandem duplication on 17q23 and appears to be an indicator of local genomic instability altering the expression of oncogenic components such as MIR21 and RPS6KB1.


Subject(s)
Breast Neoplasms/metabolism , Gene Rearrangement , Genome, Human/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Transcription, Genetic , Breast Neoplasms/genetics , Cell Line, Tumor , Chromosome Mapping , Chromosomes, Human, Pair 17/genetics , Female , Gene Dosage , Gene Expression Profiling , Genomic Instability , High-Throughput Nucleotide Sequencing , Humans , Recombinant Fusion Proteins/genetics , Ribosomal Protein S6 Kinases/genetics , Sequence Analysis, DNA
9.
Photoacoustics ; 27: 100377, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35769886

ABSTRACT

To date, studies which utilized ultrasound (US) and optoacoustic tomography (OT) fusion (US-OT) in biochemical differentiation of malignant and benign breast conditions have relied on limited biochemical data such as oxyhaemoglobin (OH) and deoxyhaemoglobin (DH) only. There has been no data of the largest biochemical components of breast fibroglandular tissue: lipid and collagen. Here, the authors believe the ability to image collagen and lipids within the breast tissue could serve as an important milestone in breast US-OT imaging with many potential downstream clinical applications. Hence, we would like to present the first-in-human US-OT demonstration of lipid and collagen differentiation in an excised breast tissue from a 38-year-old female.

10.
Diagnostics (Basel) ; 12(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292144

ABSTRACT

A 50-year-old woman with no past medical history presented with a left anterior chest wall mass that was clinically soft, mobile, and non-tender. A targeted ultrasound (US) showed findings suggestive of a lipoma. However, focal "mass-like" nodules seen within the inferior portion suggested malignant transformation of a lipomatous lesion called for cross sectional imaging, such as MRI or invasive biopsy or excision for histological confirmation. A T1-weighted image demonstrated a large lipoma that has a central fat-containing region surrounded by an irregular hypointense rim in the inferior portion, confirming the benignity of the lipoma. An ultrasound-guided photoacoustic imaging (PA) of the excised specimen to derive the biochemical distribution demonstrated the "mass-like" hypoechoic regions on US as fat-containing, suggestive of benignity of lesion, rather than fat-replacing suggestive of malignancy. The case showed the potential of PA as an adjunct to US in improving the diagnostic confidence in lesion characterization.

11.
J Extracell Vesicles ; 11(8): e12234, 2022 08.
Article in English | MEDLINE | ID: mdl-35923105

ABSTRACT

Breast cancer cells release a large quantity of biocargo-bearing extracellular vesicles (EVs), which mediate intercellular communication within the tumour microenvironment and promote metastasis. To identify EV-bound proteins related to metastasis, we used mass spectrometry to profile EVs from highly and poorly metastatic breast cancer lines of human and mouse origins. Comparative mass spectrometry indicated that integrins, including αv and ß1 subunits, are preferentially enriched in EVs of highly metastatic origin over those of poorly metastatic origin. These results are consistent with our histopathological findings, which show that integrin αv is associated with disease progression in breast cancer patients. Integrin αv colocalizes with the multivesicular-body marker CD63 at a higher frequency in the tumour and is enriched in circulating EVs of breast cancer patients at late stages when compared with circulating EVs from early-stage patients. With a magnetic bead-based flow cytometry assay, we confirmed that integrins αv and ß1 are enriched in the CD63+ subsets of EVs from both human and mouse highly metastatic cells. By analysing the level of integrin αv on circulating EVs, this assay could predict the metastatic potential of a xenografted mouse model. To explore the export mechanism of integrins into EVs, we performed immunoprecipitation mass spectrometry and identified members of the galectin family as potential shuttlers of integrin αvß1 into EVs. In particular, knockdown of galectin-3, but not galectin-1, causes a reduction in the levels of cell surface integrins ß1 and αv, and decreases the colocalization of these integrins with CD63. Importantly, knockdown of galectin-3 leads to a decrease of integrin αvß1 export into the EVs concomitant with a decrease in the metastatic potential of breast cancer cells. Moreover, inhibition of the integrin αvß1 complex leads to a reduction in the binding of EVs to fibronectin, suggesting that integrin αvß1 is important for EV retention in the extracellular matrix. EVs retained in the extracellular matrix are taken up by fibroblasts, which differentiate into cancer associated fibroblasts. In summary, our data indicate an important link between EV-bound integrin αvß1 with breast cancer metastasis and provide additional insights into the export of integrin αvß1 into EVs in the context of metastasis.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Animals , Breast Neoplasms/metabolism , Extracellular Vesicles/metabolism , Female , Galectin 3 , Humans , Integrin alphaV , Melanoma , Mice , Receptors, Vitronectin/metabolism , Skin Neoplasms , Tumor Microenvironment , Melanoma, Cutaneous Malignant
12.
J Clin Ultrasound ; 39(8): 463-5, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21412783

ABSTRACT

We report the case of a 23-year-old male presenting with carpal tunnel syndrome and a swelling over the flexor surface of the wrist. MRI findings were initially suggestive of a median nerve schwannoma but sonography (US) showed a heterogenous mass infiltrating the flexor tendons of the fingers and displacing the median nerve in the carpal tunnel. US findings were confirmed by surgical exploration, which revealed a gouty tophus of the flexor tendons of the fingers at the wrist with secondary median nerve displacement and compression.


Subject(s)
Carpal Tunnel Syndrome/diagnostic imaging , Gout/complications , Adult , Carpal Tunnel Syndrome/etiology , Fingers , Gout/diagnostic imaging , Gout/pathology , Humans , Male , Tendons/diagnostic imaging , Ultrasonography , Wrist
13.
Insights Imaging ; 12(1): 181, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34894297

ABSTRACT

Invasive lobular carcinoma (ILC) has a greater tendency to metastasize to the peritoneum, retroperitoneum, and gastrointestinal (GI) tract as compared to invasive carcinoma of no special type (NST). Like primary ILC in the breast, ILC metastases are frequently infiltrative and hypometabolic, rather than mass forming and hypermetabolic in nature. This renders them difficult to detect on conventional and metabolic imaging studies. As a result, intra-abdominal ILC metastases are often detected late, with patients presenting with clinical complications such as liver failure, hydronephrosis, or bowel obstruction. In patients with known history of ILC, certain imaging features are very suggestive of infiltrative metastatic ILC. These include retroperitoneal or peritoneal nodularity and linitis plastica appearance of the bowel. Recognition of linitis plastica on imaging should prompt deep or repeat biopsies. In this pictorial review, the authors aim to familiarize readers with imaging features and pitfalls for evaluation of intra-abdominal metastatic ILC. Awareness of these will allow the radiologist to assess these patients with a high index of suspicion and aid detection of metastatic disease. Also, this can direct histopathology and immunohistochemical staining to obtain the correct diagnosis in suspected metastatic disease.

14.
Histopathology ; 57(4): 555-63, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20955380

ABSTRACT

AIMS: Ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) exhibit frequent RUNX3 inactivation by promoter hypermethylation and protein mislocalization. The aim of this study was to analyse columnar cell lesions (CCLs) to further characterize RUNX3 involvement in breast carcinogenesis. METHODS AND RESULTS: RUNX3 expression and methylation was analysed by immunohistochemistry and methylation-specific polymerase chain reaction (PCR), respectively, in 75 CCLs. Our previously reported DCIS and IDC data were also included. Consistent with terminal duct lobular units (TDLUs) (73 of 75, 97%), active nuclear RUNX3 protein was observed in 73 of 75 (97%) CCLs [columnar cell change, 46 of 48 (96%); columnar cell hyperplasia, 12 of 12 (100%) and flat epithelial atypia, 15 of 15 (100%). In contrast to matched TDLUs from cancer specimens [four of 40 (10%)] and CCLs, significantly inactivated RUNX3 expression was detected in DCIS [17 of 20 (85%)] and IDC [18 of 20 (90%)] (all P < 0.001). RUNX3 methylation was more frequent in DCIS [15 of 20 (75%)] and IDC [16 of 20 (80%)] than CCLs [(none of 20 (0%)] and matched TDLUs [one of 10 (10%)] from cancer patients (all P < 0.001). CONCLUSIONS: RUNX3 inactivation occurs specifically in DCIS and IDC cells. In addition, RUNX3 inactivation may not be a common association between CCLs and breast carcinomas.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Intraductal, Noninfiltrating/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Core Binding Factor Alpha 3 Subunit/genetics , DNA Methylation , Female , Humans , Immunohistochemistry , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction
15.
Head Neck Pathol ; 14(1): 246-249, 2020 Mar.
Article in English | MEDLINE | ID: mdl-30610525

ABSTRACT

We present a case of a primary 2.5 cm pleomorphic lipoma of the right parotid gland with prominent myxoid change which on FNA displayed features that mimicked a carcinoma or sarcoma ex pleomorphic adenoma. The patient was a 79 year old man with no oncological history or tumor elsewhere. On immunohistochemistry the neoplastic cells strongly expressed CD34. There was no expression of retinoblastoma protein, smooth muscle actin, S100-protein or cytokeratins (AE1/3 and CAM5.2). The Ki-67 proliferation index was low (< 2%). Fluorescence in situ hybridization was negative for MDM2 gene amplification.


Subject(s)
Lipoma/diagnosis , Lipoma/pathology , Parotid Neoplasms/diagnosis , Parotid Neoplasms/pathology , Adenoma, Pleomorphic/diagnosis , Aged , Biomarkers, Tumor/analysis , Biopsy, Fine-Needle , Carcinoma/diagnosis , Diagnosis, Differential , Humans , Male
16.
Photoacoustics ; 19: 100164, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32420026

ABSTRACT

In this pilot study, we tested an ultrasound-guided optoacoustic tomography (US-OT) two-dimensional (2D) array scanner to understand the optoacoustic patterns of excised breastconserving surgery (BCS) specimens. We imaged 14 BCS specimens containing malignant tumors at eight wavelengths spanning 700-1100 nm. Spectral unmixing across multiple wavelengths allowed for visualizing major intrinsic chromophores in the breast tissue including hemoglobin and lipid up to a depth of 7 mm. We identified less/no lipid signals within the tumor and intense deoxy-hemoglobin (Hb) signals on the rim of the tumor as unique characteristics of malignant tumors in comparison to no tumor region. We also observed continuous broad lipid signals as features of negative margins and compromised lipid signals interrupted by vasculature as features of positive margins. These differentiating patterns can form the basis of US-OT to be explored as an alternate, fast and efficient intraoperative method for evaluation of tumor resection margins.

17.
Transl Oncol ; 13(2): 254-261, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31869750

ABSTRACT

PURPOSE: To determine the accuracy of a handheld ultrasound-guided optoacoustic tomography (US-OT) probe developed for human deep-tissue imaging in ex vivo assessment of tumor margins postlumpectomy. METHODS: A custom-built two-dimensional (2D) US-OT-handheld probe was used to scan 15 lumpectomy breast specimens. Optoacoustic signals acquired at multiple wavelengths between 700 and 1100 nm were reconstructed using model linear algorithm, followed by spectral unmixing for lipid and deoxyhemoglobin (Hb). Distribution maps of lipid and Hb on the anterior, posterior, superior, inferior, medial, and lateral margins of the specimens were inspected for margin involvement, and results were correlated with histopathologic findings. The agreement in tumor margin assessment between US-OT and histopathology was determined using the Bland-Altman plot. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of margin assessment using US-OT were calculated. RESULTS: Ninety margins (6 × 15 specimens) were assessed. The US-OT probe resolved blood vessels and lipid up to a depth of 6 mm. Negative and positive margins were discriminated by marked differences in the distribution patterns of lipid and Hb. US-OT assessments were concordant with histopathologic findings in 87 of 89 margins assessed (one margin was uninterpretable and excluded), with diagnostic accuracy of 97.9% (kappa = 0.79). The sensitivity, specificity, PPV, and NPV were 100% (4/4), 97.6% (83/85), 66.7% (4/6), and 100% (83/83), respectively. CONCLUSION: US-OT was capable of providing distribution maps of lipid and Hb in lumpectomy specimens that predicted tumor margins with high sensitivity and specificity, making it a potential tool for intraoperative tumor margin assessment.

18.
Breast Cancer Res Treat ; 113(1): 113-21, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18256927

ABSTRACT

BACKGROUND: We had previously established that inactivation of RUNX3 occurs by frequent promoter hypermethylation and protein mislocalization in invasive ductal carcinomas (IDC) of breast. Here, we hypothesize that inactivation of RUNX3 occurring in ductal carcinoma in situ (DCIS) represent early event in breast carcinogenesis. METHODS: The study cohort of 40 patients included 17 pure DCIS cases and 23 cases of DCIS with associated IDC (DCIS-IDC). The DCIS and IDC components of mixed cases were manually microdissected to permit separate evaluation. All the 63 samples including 17 pure DCIS, 23 samples each of DCIS and IDC of DCIS-IDC cases were analyzed for RUNX3 protein expression using R3-6E9 monoclonal antibody as well as promoter methylation status by methylation specific PCR. RESULTS: Compared to matched normal breast samples (4 of 40, 10%), DCIS (35 of 40, 88%) and IDC (21 of 23, 91%) exhibited significant RUNX3 inactivation (P<0.001) in the form of negative or weak nuclear staining. In contrast to normal breast tissues (1/10, 10%), promoter hypermethylation of RUNX3 was significantly higher in the neoplastic breast samples (46 of total 61, 75%) including 30 of 40 (75%) DCIS and 16 of 21 (76%) IDC samples (P=0.009). Overall, promoter hypermethylation correlated with RUNX3 inactivation in 42 of 46 (91%) methylated samples (P=0.03). Mislocalized cytoplasmic expression also accounted for RUNX3 inactivation in majority of DCIS (33/40, 83%) and IDC (20/23, 87%) samples independent of promoter hypermethylation. CONCLUSION: Our data suggest that RUNX3 inactivation by promoter hypermethylation and protein mislocalization constitute an early event in breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Core Binding Factor Alpha 3 Subunit/antagonists & inhibitors , Core Binding Factor Alpha 3 Subunit/genetics , Promoter Regions, Genetic , Breast Neoplasms/mortality , Breast Neoplasms/surgery , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , DNA Methylation , DNA Primers , DNA, Neoplasm/genetics , Disease Progression , Female , Humans , Immunohistochemistry , Mastectomy , Microdissection , Neoplasm Invasiveness , Neoplasm Metastasis , Polymerase Chain Reaction
19.
Genes Chromosomes Cancer ; 47(12): 1098-109, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18720522

ABSTRACT

A study was undertaken to correlate telomere dysfunction and genomic instability with the histopathological grades and the estrogen and progesterone receptor status in breast cancer. Sixty-one archived breast tissues (38 cancer tissues and 23 paired normal tissues) were used in the study. The breast tumor tissues showed significantly shorter telomeres (7.7 kb) compared with the paired adjacent tissues (9.0 kb) by Southern blot analysis. Moreover, telomere shortening was more significant in Grade III tumors than in the Grade II tumors (P = 0.05). Quantitative fluorescence in situ hybridization on paraffin tissue sections revealed a similar trend in telomere shortening. Telomere attrition was associated with telomere dysfunction as revealed by the presence of significantly higher anaphase bridges in tumor cells which was tumor grade dependent. Furthermore, estrogen receptive negative tumors displayed higher anaphase and internuclear bridges. Selected samples from each grade showed greater genomic imbalances in the higher grades than the lower grade tumors as detected by array-comparative genomic hybridization. Telomerase activity was found to be higher in the higher grades (Grade II and III) compared with the lower grade (Grade I). The average mRNA expression of TRF1 and POT1 was lower in the tumor tissues than in the normal tissues. Tankyrase 1 mRNA expression showed a grade-dependent increase in tumor tissues and its expression was also high in estrogen and progesterone negative tumors. The data support the notion that telomere dysfunction might be of value as a marker of aggressiveness of the tumors in breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Genomic Instability/genetics , Telomere/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Female , Humans , RNA, Messenger/metabolism , Shelterin Complex , Tankyrases/genetics , Tankyrases/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism
20.
Clin Cancer Res ; 25(8): 2588-2600, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30593516

ABSTRACT

PURPOSE: Trastuzumab-based chemotherapy has shown remarkable clinical benefits for patients with HER2-positive breast cancer. However, treatment regimens involving trastuzumab had little or no effect for a subset of patients. Preliminary studies revealed WW-binding protein 2 (WBP2), an oncogenic transcription coactivator, to be coamplified with HER2 in 36% of HER2-positive breast cancers. We hypothesize that WBP2 regulates and correlates with the response of HER2-positive breast cancer to trastuzumab. EXPERIMENTAL DESIGN: The coexpression of WBP2 and HER2 in breast tumors was validated using IHC. The role and mechanism of WBP2 in regulating breast cancer response to trastuzumab was elucidated using in vitro, patient-derived xenograft and murine xenograft models. A multicenter retrospective study involving 143 patients given neoadjuvant trastuzumab-based chemotherapy was conducted to determine whether WBP2 expression correlates with pathologic complete response (pCR). RESULTS: Elevated expression of WBP2 significantly enhanced breast cancer's response to trastuzumab by augmenting trastuzumab-induced HER2 downregulation and cell-cycle arrest via inhibition of cyclin D expression. High level of WBP2 correlated with better pCR (67.19%) compared with low WBP2 level (26.58%). The highest response was observed in subgroups of patients with high WBP2-expressing tumors also aged below 50 years (77.78%) or were premenopausal in status (73.33%). Retrospectively, WBP2 demonstrated sensitivity of 80% to 81% and specificity of 76.5% to 80% in discriminating between patients showing pCR and non-pCR. CONCLUSIONS: WBP2 expression correlates with the response of HER2-positive breast cancer to trastuzumab-based neoadjuvant chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Receptor, ErbB-2/genetics , Trans-Activators/genetics , Adult , Aged , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Disease Models, Animal , Female , Gene Amplification , Gene Regulatory Networks , Humans , Middle Aged , Neoadjuvant Therapy , Neoplasm Grading , Neoplasm Staging , Phosphorylation , Receptor, ErbB-2/metabolism , Retrospective Studies , Signal Transduction/drug effects , Trastuzumab/administration & dosage , Treatment Outcome , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL