Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Stroke ; 55(6): 1468-1476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747162

ABSTRACT

BACKGROUND: Normobaric hyperoxia (NBO) has neuroprotective effects in acute ischemic stroke. Thus, we aimed to identify the optimal NBO treatment duration combined with endovascular treatment. METHODS: This is a single-center, randomized controlled, open-label, blinded-end point dose-escalation clinical trial. Patients with acute ischemic stroke who had an indication for endovascular treatment at Tianjin Huanhu Hospital were randomly assigned to 4 groups (1:1 ratio) based on NBO therapy duration: (1) control group (1 L/min oxygen for 4 hours); (2) NBO-2h group (10 L/min for 2 hours); (3) NBO-4h group (10 L/min for 4 hours); and (4) NBO-6h group (10 L/min for 6 hours). The primary outcome was cerebral infarction volume at 72 hours after randomization using an intention-to-treat analysis model. The primary safety outcome was the 90-day mortality rate. RESULTS: Between June 2022 and September 2023, 100 patients were randomly assigned to the following groups: control group (n=25), NBO-2h group (n=25), NBO-4h group (n=25), and NBO-6h group (n=25). The 72-hour cerebral infarct volumes were 39.4±34.3 mL, 30.6±30.1 mL, 19.7±15.4 mL, and 22.6±22.4 mL, respectively (P=0.013). The NBO-4h and NBO-6h groups both showed statistically significant differences (adjusted P values: 0.011 and 0.027, respectively) compared with the control group. Compared with the control group, both the NBO-4h and NBO-6h groups showed significant differences (P<0.05) in the National Institutes of Health Stroke Scale scores at 24 hours, 72 hours, and 7 days, as well as in the change of the National Institutes of Health Stroke Scale scores from baseline to 24 hours. Additionally, there were no significant differences among the 4 groups in terms of 90-day mortality rate, symptomatic intracranial hemorrhage, early neurological deterioration, or severe adverse events. CONCLUSIONS: The effectiveness of NBO therapy was associated with oxygen administration duration. Among patients with acute ischemic stroke who underwent endovascular treatment, NBO therapy for 4 and 6 hours was found to be more effective. Larger-scale multicenter studies are needed to validate these findings. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05404373.


Subject(s)
Endovascular Procedures , Ischemic Stroke , Humans , Male , Female , Middle Aged , Endovascular Procedures/methods , Aged , Ischemic Stroke/therapy , Hyperoxia , Treatment Outcome , Combined Modality Therapy , Oxygen Inhalation Therapy/methods
2.
Toxicol Appl Pharmacol ; 364: 114-119, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30594689

ABSTRACT

Zinc is the second most abundant metal in human and serves as an essential trace element in the body. During the past decades, zinc has been found to play important roles in central nervous system, such as the development of neurons and synaptic activities. An imbalance of zinc is associated with brain diseases. The blood-brain barrier (BBB) maintains the homeostasis of the microenvironment, regulating the balance of zinc in the brain. A compromised BBB is the main cause of severe complications in cerebral ischemic patients, such as hemorrhage transformation, inflammation and edema. Recent studies reported that zinc in the brain may be a potential target for integrative protection against ischemic brain injury. Although zinc has long been regarded as important transmitters in central nervous system, the critical role of zinc dyshomeostasis in damage to the BBB has not been fully recognized. In this review, we summarize the role of the BBB in regulating homeostasis of zinc in physiological conditions and the effects of changes in zinc levels on the permeability of the BBB in cerebral ischemia. The integrity of BBB maintains the homeostasis of zinc in pathological conditions, while the balance of zinc in the brain and the circulation maintains the normal function of the BBB. Interrupting the zinc/BBB system will disturb the microenvironment in the brain, leading to pathological diseases. In stroke patients, zinc may serve as a potential target for protecting the BBB and reducing hemorrhage transformation, inflammation and edema.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Capillary Permeability , Stroke/metabolism , Zinc/metabolism , Animals , Blood-Brain Barrier/physiopathology , Brain Ischemia/physiopathology , Cation Transport Proteins/metabolism , Cellular Microenvironment , Homeostasis , Humans , Stroke/physiopathology , Zinc/deficiency
3.
Toxicol Appl Pharmacol ; 377: 114601, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31152817

ABSTRACT

High concentration of zinc has been reported to act as a critical mediator of neuronal death in the ischemic brain. Our previous studies showed that labile zinc accumulates in cerebromicrovessels and contributes to blood-brain barrier (BBB) permeability increase after cerebral ischemia. However, the role of mitochondrial zinc in ischemia-induced BBB permeability alteration is still unclear. In this study, we showed that ischemia/reperfusion induced free zinc accumulation in endothelial cells (ECs), resulting in increased generation of reactive oxygen species (ROS) in both cultured ECs and in microvessels isolated from the brain of ischemic rats. Furthermore, we found that zinc was highly accumulated in mitochondria, leading to mitochondrial ROS generation under the ischemic condition. Moreover, zinc overload in mitochondria resulted in the collapse of the network of mitochondria, which was mediated through Dynamin-related protein-1 (Drp-1) dependent mitochondrial fission pathway. Finally, the zinc overload in mitochondria activated matrix metalloproteinase-2 and led to ischemia-induced BBB permeability increase. This study demonstrated that zinc-ROS pathway in mitochondria contributes to the ischemia-induced BBB disruption via Drp-1 dependent mitochondrial fission pathway.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Ischemia/metabolism , Dynamins/biosynthesis , Mitochondria/drug effects , Mitochondria/metabolism , Zinc/metabolism , Animals , Cell Line , Dynamins/genetics , Glucose/deficiency , Hypoxia/metabolism , Matrix Metalloproteinase 2/metabolism , Mice , Microvessels/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism
4.
Stroke ; 49(9): 2200-2210, 2018 09.
Article in English | MEDLINE | ID: mdl-30354980

ABSTRACT

Background and Purpose- Although intracellular zinc accumulation has been shown to contribute to neuronal death after cerebral ischemia, the mechanism by which zinc keeps on accumulating to cause severe brain damage remains unclear. Herein the dynamic cause-effect relationships between zinc accumulation and reactive oxygen species (ROS) production during cerebral ischemia/reperfusion are investigated. Methods- Rats were treated with zinc chelator, ROS scavenger, mitochondria-targeted ROS inhibitor, or NADPH oxidase inhibitor during a 90-minute middle cerebral artery occlusion. Cytosolic labile zinc, ROS level, cerebral infarct volume, and neurological functions were assessed after ischemia/reperfusion. Results- Zinc and ROS were colocalized in neurons, leading to neuronal apoptotic death. Chelating zinc reduced ROS production at 6 and 24 hours after reperfusion, whereas eliminating ROS reduced zinc accumulation only at 24 hours. Furthermore, suppression of mitochondrial ROS production reduced the total ROS level and brain damage at 6 hours after reperfusion but did not change zinc accumulation, indicating that ROS is produced mainly from mitochondria during early reperfusion and the initial zinc release is upstream of ROS generation after ischemia. Suppression of NADPH oxidase decreased ROS generation, zinc accumulation, and brain damage only at 24 hours after reperfusion, indicating that the majority of ROS is produced by NADPH oxidase at later reperfusion time. Conclusions- This study provides the direct evidence that there exists a positive feedback loop between zinc accumulation and NADPH oxidase-induced ROS production, which greatly amplifies the damaging effects of both. These findings reveal that different ROS-generating source contributes to ischemia-generated ROS at different time, underscoring the critical importance of spatial and temporal factors in the interaction between ROS and zinc accumulation, and the consequent brain injury, after cerebral ischemia/reperfusion.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Brain/drug effects , Chelating Agents/pharmacology , Infarction, Middle Cerebral Artery/metabolism , Neurons/drug effects , Reactive Oxygen Species/metabolism , Zinc/metabolism , Animals , Biphenyl Compounds/pharmacology , Brain/metabolism , Brain Ischemia/metabolism , Ethylenediamines/pharmacology , NADPH Oxidases/antagonists & inhibitors , Neurons/metabolism , Onium Compounds/pharmacology , Organometallic Compounds/pharmacology , Pramipexole/pharmacology , Rats , Salicylates/pharmacology
5.
Stroke ; 48(10): 2848-2854, 2017 10.
Article in English | MEDLINE | ID: mdl-28931617

ABSTRACT

BACKGROUND AND PURPOSE: Damage of the blood-brain barrier (BBB) increases the incidence of neurovascular complications, especially for cerebral hemorrhage after tPA (tissue-type plasminogen activator) therapy. Currently, there is no effective method to evaluate the extent of BBB damage to guide tPA use. Herein, we investigated whether blood levels of tight junction proteins could serve as biomarker of BBB damages in acute ischemic stroke (AIS) in both rats and patients. We examined whether this biomarker could reflect the extent of BBB permeability during cerebral ischemia/reperfusion and the effects of normobaric hyperoxia (NBO) on BBB damage. METHODS: Rats were exposed to NBO (100% O2) or normoxia (21% O2) during middle cerebral artery occlusion. BBB permeability was determined. Occludin and claudin-5 in blood and cerebromicrovessels were measured. Patients with AIS were assigned to oxygen therapy or room air for 4 hours, and blood occludin and claudin-5 were measured at different time points after stroke. RESULTS: Cerebral ischemia/reperfusion resulted in the degradation of occludin and claudin-5 in microvessels, leading to increased BBB permeability in rats. In blood samples, occludin increased with 4-hour ischemia and remained elevated during reperfusion, correlating well with its loss from ischemic cerebral microvessels. NBO treatment both prevented occludin degradation in microvessels and reduced occludin levels in blood, leading to improved neurological functions in rats. In patients with AIS receiving intravenous tPA thrombolysis, the blood occludin was already elevated when patients arrived at hospital (within 4.5 hours since symptoms appeared) and remained at a high level for 72 hours. NBO significantly lowered the level of blood occludin and improved neurological functions in patients with AIS. CONCLUSIONS: Blood occludin may be a clinically viable biomarker for evaluating BBB damage during ischemia/reperfusion. NBO therapy has the potential to reduce blood occludin, protect BBB, and improve outcome in AIS patients with intravenous tPA thrombolysis. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02974283.


Subject(s)
Brain Ischemia/blood , Hyperoxia/blood , Occludin/blood , Stroke/blood , Adult , Aged , Animals , Biomarkers/blood , Brain Ischemia/diagnosis , Brain Ischemia/therapy , Double-Blind Method , Female , Humans , Hyperoxia/diagnosis , Male , Middle Aged , Random Allocation , Rats , Rats, Sprague-Dawley , Stroke/diagnosis , Stroke/therapy
6.
Neurobiol Dis ; 95: 12-21, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27388935

ABSTRACT

Zinc ions are stored in synaptic vesicles and cerebral ischemia triggers their release from the terminals of neurons. Zinc accumulation in neurons has been shown to play an important role in neuronal death following ischemia. However, almost nothing is known about whether zinc is involved in ischemia-induced blood-brain barrier (BBB) disruption. Herein, we investigated the contribution of zinc to ischemia-induced acute BBB disruption and the possible molecular mechanisms using both cellular and animal models of cerebral ischemia. Zinc greatly increased BBB permeability and exacerbated the loss of tight junction proteins (Occludin and Claudin-5) in the endothelial monolayer under oxygen glucose deprivation conditions. In cerebral ischemic rats, a dramatically elevated level of zinc accumulation in microvessels themselves was observed in isolated microvessels and in situ, showing the direct interaction of zinc on ischemic microvessels. Treatment with a specific zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), even at 60-min post-ischemia onset, could greatly attenuate BBB permeability in the ischemic rats as measured by Evan's Blue extravasation, edema volume and magnetic resonance imaging. Furthermore, zinc accumulation in microvessels activated the superoxide/matrix metalloproteinase-9/-2 pathway, which leads to the loss of tight junction proteins (Occludin and Claudin-5) and death of endothelial cells in microvessels themselves. Our findings reveal a novel mechanism of cerebral ischemia-induced BBB damage, and implicate zinc as an effective and viable new target for reducing acute BBB damage following ischemic stroke.


Subject(s)
Blood-Brain Barrier/pathology , Brain Ischemia/metabolism , Permeability/drug effects , Zinc/metabolism , Animals , Blood-Brain Barrier/drug effects , Brain Ischemia/physiopathology , Ethylenediamines/pharmacology , Infarction, Middle Cerebral Artery/pathology , Male , Matrix Metalloproteinase 9/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Stroke/drug therapy , Stroke/pathology , Tight Junction Proteins/metabolism
7.
Stroke ; 46(5): 1344-1351, 2015 May.
Article in English | MEDLINE | ID: mdl-25804925

ABSTRACT

BACKGROUND AND PURPOSE: Prolonged ischemia causes blood-brain barrier (BBB) damage and increases the incidence of neurovasculature complications secondary to reperfusion. Therefore, targeting ischemic BBB damage pathogenesis is critical to reducing neurovasculature complications and expanding the therapeutic time window of tissue-type plasminogen activator (tPA) thrombolysis. This study investigates whether increasing cerebral tissue PO2 through normobaric hyperoxia (NBO) treatment will slow the progression of BBB damage and, thus, improve the outcome of delayed tPA treatment after cerebral ischemia. METHODS: Rats were exposed to NBO (100% O2) or normoxia (21% O2) during 3-, 5-, or, 7-hour middle cerebral artery occlusion. Fifteen minutes before reperfusion, tPA was continuously infused to rats for 30 minutes. Neurological score, mortality rate, and BBB permeability were determined. Matrix metalloproteinase-9 was measured by gelatin zymography and tight junction proteins (occludin and cluadin-5) by Western blot in the isolated cerebral microvessels. RESULTS: NBO slowed the progression of ischemic BBB damage pathogenesis, evidenced by reduced Evan blue leakage, smaller edema, and hemorrhagic volume in NBO-treated rats. NBO treatment reduced matrix metalloproteinase-9 induction and the loss of tight junction proteins in ischemic cerebral microvessels. NBO-afforded BBB protection was maintained during tPA reperfusion, resulting in improved neurological functions, significant reductions in brain edema, hemorrhagic volume, and mortality rate, even when tPA was given after prolonged ischemia (7 hours). CONCLUSIONS: Early NBO treatment slows ischemic BBB damage pathogenesis and significantly improves the outcome of delayed tPA treatment, providing new evidence supporting NBO as an effective adjunctive therapy to extend the time window of tPA thrombolysis for ischemic stroke.


Subject(s)
Blood-Brain Barrier/pathology , Brain Ischemia/drug therapy , Oxygen Inhalation Therapy/methods , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/therapeutic use , Animals , Brain Edema/pathology , Brain Edema/prevention & control , Brain Ischemia/complications , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Male , Matrix Metalloproteinase 9/metabolism , Psychomotor Performance/drug effects , Rats , Rats, Sprague-Dawley , Time-to-Treatment , Treatment Outcome
8.
Synapse ; 69(1): 7-14, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25155519

ABSTRACT

Hypoxic preconditioning (HPC) elicits resistance to more drastic subsequent insults, which potentially provide neuroprotective therapeutic strategy, but the underlying mechanisms remain to be fully elucidated. Here, we examined the effects of HPC on synaptic ultrastructure in olfactory bulb of mice. Mice underwent up to five cycles of repeated HPC treatments, and hypoxic tolerance was assessed with a standard gasp reflex assay. As expected, HPC induced an increase in tolerance time. To assess synaptic responses, Western blots were used to quantify protein levels of representative markers for glia, neuron, and synapse, and transmission electron microscopy was used to examine synaptic ultrastructure and mitochondrial density. HPC did not significantly alter the protein levels of astroglial marker (GFAP), neuron-specific markers (GAP43, Tuj-1, and OMP), synaptic number markers (synaptophysin and SNAP25) or the percentage of excitatory synapses versus inhibitory synapses. However, HPC significantly affected synaptic curvature and the percentage of synapses with presynaptic mitochondria, which showed concomitant change pattern. These findings demonstrate that HPC is associated with changes in synaptic ultrastructure.


Subject(s)
Hypoxia/pathology , Olfactory Bulb/ultrastructure , Synapses/ultrastructure , Animals , Blotting, Western , Hypoxia/physiopathology , Male , Mice, Inbred ICR , Microscopy, Electron, Transmission , Mitochondria/physiology , Mitochondria/ultrastructure , Neural Inhibition/physiology , Olfactory Bulb/physiopathology , Random Allocation , Reflex/physiology , Synapses/physiology
9.
Int J Neurosci ; 125(9): 693-702, 2015.
Article in English | MEDLINE | ID: mdl-25226558

ABSTRACT

OBJECTIVES: Intra-artery infusion of recombinant human erythropoietin (rhEPO) has recently been reported to confer neuroprotection against cerebral ischemia-reperfusion injury in animal models; however, the molecular mechanisms are still under investigation. The present study focused on the specific mechanism involved in blood-brain barrier (BBB) disruption. METHODS: Thirty-six male and nine female Sprague Dawley rats were subjected to middle cerebral artery (MCA) occlusion to induce focal cerebral ischemia, and administrated rhEPO at a dose of 800 U/kg through MCA infusion at the beginning of reperfusion. Neurobehavioral deficits, brain edema, and infarct volume were evaluated after 2 h of ischemia and 24 h of reperfusion. BBB permeability was assessed by quantifying the extravasation of Evans blue (EB) dye. The expression of tight junction proteins and matrix metalloproteinases (MMPs) (Claudin-5, Occludin, MMP-2, and MMP-9) in microvessels were detected by immunofluorescence and western blot. The activities of MMPs in the cerebral microvessels were determined by gelatin zymography. RESULTS: Treatment with rhEPO through the MCA strongly alleviated infarct volume, brain edema, and improved neurobehavioral outcomes in male and female rats. In addition, rhEPO remarkably suppressed the EB extravasation induced by brain ischemia. Furthermore, rhEPO prevented degradation of Claudin-5 and Occludin, and reduced the expression and activity of MMP-2 and MMP-9 in isolated brain microvessels. CONCLUSIONS: Treatment with rhEPO through MCA infusion prevented brain edema formation and infarction through inhibition of MMP-mediated BBB disruption in acute ischemic stroke.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Edema/prevention & control , Brain Ischemia/drug therapy , Cerebral Infarction/prevention & control , Erythropoietin/pharmacology , Reperfusion Injury/prevention & control , Animals , Brain Ischemia/etiology , Erythropoietin/administration & dosage , Female , Humans , Infarction, Middle Cerebral Artery/complications , Infusions, Intra-Arterial , Male , Rats , Rats, Sprague-Dawley , Recombinant Proteins
10.
Stroke ; 45(4): 1139-47, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24643405

ABSTRACT

BACKGROUND AND PURPOSE: Zinc has been reported to possess both neurotoxic and neuroprotective capabilities. The effects of elevated intracellular zinc accumulation following transient focal cerebral ischemia remain to be fully elucidated. Here, we investigated whether removing zinc with the membrane-permeable zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), would decrease the intracellular levels of zinc in the ischemic tissue, leading to reduced brain damage and improved neurological outcomes. METHODS: Rats were pretreated with TPEN or vehicle before or after a 90-minute middle cerebral artery occlusion. Cerebral infarct volume, neurological functions, neuronal apoptosis, poly(ADP-ribose) polymerase activity, and cytosolic labile zinc were assessed after ischemia and reperfusion. RESULTS: Cerebral ischemia caused a dramatic cytosolic labile zinc accumulation in the ischemic tissue, which was decreased markedly by TPEN (15 mg/kg) pretreatment. Chelating zinc lead to reduced infarct volume compared with vehicle-treated middle cerebral artery occlusion rats, accompanied by much improved neurological assessment and motor function, which were sustained for 14 days after reperfusion. We also determined that reducing zinc accumulation rescued neurons from ischemia-induced apoptotic death by reducing poly(ADP-ribose) polymerase-1 activation. CONCLUSIONS: Ischemia-induced high accumulation of intracellular zinc significantly contributed to ischemic brain damage through promotion of neuronal apoptotic death. Removing zinc may be an effective and novel approach to reduce ischemic brain injury.


Subject(s)
Apoptosis/drug effects , Brain Ischemia/drug therapy , Chelating Agents/pharmacology , Ethylenediamines/pharmacology , Ischemic Attack, Transient/drug therapy , Zinc/metabolism , Animals , Apoptosis/physiology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cytosol/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Ischemic Attack, Transient/metabolism , Ischemic Attack, Transient/pathology , Male , Motor Activity/drug effects , Motor Activity/physiology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Rats , Rats, Sprague-Dawley
11.
J Neurochem ; 129(1): 120-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24251624

ABSTRACT

Blood-brain barrier (BBB) disruption occurring within the first few hours of ischemic stroke onset is closely associated with hemorrhagic transformation following thrombolytic therapy. However, the mechanism of this acute BBB disruption remains unclear. In the neurovascular unit, neurons do not have direct contact with the endothelial barrier; however, they are highly sensitive and vulnerable to ischemic injury, and may act as the initiator for disrupting BBB when cerebral ischemia occurs. Herein, we employed oxygen-glucose deprivation (OGD) and an in vitro BBB system consisting of brain microvascular cells and astrocytes to test this hypothesis. Neurons (CATH.a cells) were exposed to OGD for 3-h before co-culturing with endothelial monolayer (bEnd 3 cells), or endothelial cells plus astrocytes (C8-D1A cells). Incubation of OGD-treated neurons with endothelial monolayer alone did not increase endothelial permeability. However, when astrocytes were present, the endothelial permeability was significantly increased, which was accompanied by loss of occludin and claudin-5 proteins as well as increased vascular endothelial growth factor (VEGF) secretion into the conditioned medium. Importantly, all these changes were abolished when VEGF was knocked down in astrocytes by siRNA. Our findings suggest that ischemic neurons activate astrocytes to increase VEGF production, which in turn induces endothelial barrier disruption.


Subject(s)
Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Endothelium, Vascular/metabolism , Neurons/metabolism , Vascular Endothelial Growth Factor A/biosynthesis , Blood-Brain Barrier/cytology , Cell Hypoxia/physiology , Cells, Cultured , Coculture Techniques , Endothelium, Vascular/cytology , Glucose/deficiency , Humans , Oxygen/metabolism
12.
CNS Neurosci Ther ; 30(3): e14450, 2024 03.
Article in English | MEDLINE | ID: mdl-37721332

ABSTRACT

BACKGROUND AND PURPOSE: Perihematomal edema (PHE) is one of the severe secondary damages following intracranial hemorrhage (ICH). Studies showed that blood-brain barrier (BBB) injury contributes to the development of PHE. Previous studies showed that occludin protein is a potential biomarker of BBB injury. In the present study, we investigated whether the levels of serum occludin on admission are associated with PHE volumes in ICH patients. METHODS: This cross-sectional study included 90ICH patients and 32 healthy controls.The volumes of hematoma and PHE were assessed using non-contrast cranial CT within 30 min of admission. Blood samples were drawn on admission, and the levels of baseline serum occludin were detected using enzyme-linked immunosorbent assay. Partial correlation analysis and multiple linear regression analysis were performed to evaluate the association between serum occludin levels and PHE volumes in ICH patients. RESULTS: The serum occludin levels in ICH patients were much higher than health controls (median 0.27 vs. 0.13 ng/mL, p < 0.001). At admission, 34 ICH patients (37.78%) had experienced a severe PHE (≥30 mL), and their serum occludin levels were higher compared to those with mild PHE (<30 mL) (0.78 vs. 0.21 ng/mL, p < 0.001). The area under the receiver operating characteristics curve (ROC) of serum occludin level in predicting severe PHE was 0.747 (95% confidence interval CI 0.644-0.832, p < 0.001). There was a significant positive correlation between serum occludin levels and PHE volumes (partial correlation r = 0.675, p < 0.001). Multiple linear regression analysis showed that serum occludin levels remained independently associated with the PHE volumes after adjusting other confounding factors. CONCLUSION: The present study showed that serum occludin levels at admission were independently correlated with PHE volumes in ICH patients, which may provide a biomarker indicating PHE volume change.


Subject(s)
Brain Edema , Cerebral Hemorrhage , Humans , Biomarkers , Brain Edema/diagnostic imaging , Brain Edema/etiology , Cross-Sectional Studies , Edema/complications , Hematoma , Intracranial Hemorrhages , Occludin
13.
Heliyon ; 10(2): e25052, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312551

ABSTRACT

Background: and Purpose: Hemorrhagic transformation (HT) is one of the severe complications in acute ischemic stroke, especially for the patients who undergo recanalization treatment. It is crucial to screen patients who have high risk of HT before recanalization. However, current prediction models based on clinical factors are not ideal for clinical practice. Serum occludin, a biomarker for cerebral ischemia-induced blood-brain barrier disruption, has potential for predicting HT. This study was to investigate whether the combination of serum occludin and clinical risk factors improved the efficacy of predicting HT. Methods: This was a single-center prospective observational study. Baseline clinical data and blood samples of recanalization patients were collected upon admission to our hospital. The level of serum occludin was measured using enzyme-linked immunosorbent assay. The diagnosis of HT was confirmed by CT scans within 36 h post recanalization. Results: A total of 324 patients with recanalization were enrolled and 68 patients presented HT occurrence. HT patients had the higher level of baseline occludin than patients without HT (p < 0.001). Multivariate regression analysis showed that serum occludin level, Alberta Stroke Program Early CT Scores and endovascular therapy were independent risk factors (p < 0.05) for HT after adjusting potential confounders. The combination of serum occludin and clinical risk factors significantly improved the accuracy of predicting HT [area under the curve (AUC, 0.821 vs 0.701, p < 0.001), and net reclassification improvement (31.1 %), integrated discrimination improvement (21.5 %), p < 0.001] compared to a model employing only clinical risk factors. The modified AUC (0.806) of combined model based on 10-fold-cross-validation was still higher than clinical risk model (0.701). Conclusion: The combination of serum occludin and clinical risk factors significantly improved the prediction efficacy for HT, providing a novel potential prediction model to screen for patients with high risk of HT before recanalization in acute ischemic stroke.

14.
Metallomics ; 16(3)2024 03 12.
Article in English | MEDLINE | ID: mdl-38419293

ABSTRACT

Ischemic stroke is a leading cause of death and disability worldwide, and presently, there is no effective neuroprotective therapy. Zinc is an essential trace element that plays important physiological roles in the central nervous system. Free zinc concentration is tightly regulated by zinc-related proteins in the brain under normal conditions. Disruption of zinc homeostasis, however, has been found to play an important role in the mechanism of brain injury following ischemic stroke. A large of free zinc releases from storage sites after cerebral ischemia, which affects the functions and survival of nerve cells, including neurons, astrocytes, and microglia, resulting in cell death. Ischemia-triggered intracellular zinc accumulation also disrupts the function of blood-brain barrier via increasing its permeability, impairing endothelial cell function, and altering tight junction levels. Oxidative stress and neuroinflammation have been reported to be as major pathological mechanisms in cerebral ischemia/reperfusion injury. Studies have showed that the accumulation of intracellular free zinc could impair mitochondrial function to result in oxidative stress, and form a positive feedback loop between zinc accumulation and reactive oxygen species production, which leads to a series of harmful reactions. Meanwhile, elevated intracellular zinc leads to neuroinflammation. Recent studies also showed that autophagy is one of the important mechanisms of zinc toxicity after ischemic injury. Interrupting the accumulation of zinc will reduce cerebral ischemia injury and improve neurological outcomes. This review summarizes the role of zinc toxicity in cellular and tissue damage following cerebral ischemia, focusing on the mechanisms about oxidative stress, inflammation, and autophagy.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Humans , Zinc/metabolism , Neuroinflammatory Diseases , Oxidative Stress , Brain Ischemia/metabolism , Blood-Brain Barrier/metabolism , Autophagy , Ischemic Stroke/metabolism , Brain Injuries/metabolism , Reperfusion Injury/metabolism
15.
Exp Neurol ; 379: 114849, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857748

ABSTRACT

Cerebral ischemic stroke is a serious disease with high mortality and disability rates. However, few neuroprotective drugs have been used for ischemic stroke in the clinic. Two main reasons may be responsible for this failure: difficulty in penetrating the blood-brain barrier (BBB) and easily inactivated in the blood circulation. Ferroptosis, a lipid oxidation-related cell death, plays significant roles in cerebral ischemia-reperfusion injury. We utilized RVG29, a peptide derived from Rabies virus glycoprotein, to obtain BBB-targeted lipid nanoparticles (T-LNPs) in order to investigate whether T-LNPs improved the neuroprotective effects of Ferrostatin-1 (Fer1, an inhibitor of ferroptosis) against cerebral ischemic damage. T-LNPs significantly increased BBB penetration following oxygen/glucose deprivation exposure in an in vitro BBB model and enhanced the fluorescence distribution in brain tissues at 6 h post-administration in a cerebral ischemic murine model. Moreover, T-LNPs encapsulated Fer1 (T-LNPs-Fer1) significantly enhanced the inhibitory effects of Fer1 on ferroptosis by maintaining the homeostasis of NADPH oxidase 4 (NOX4) and glutathione peroxidase 4 (GPX4) signals in neuronal cells after cerebral ischemia. T-LNPs-Fer1 significantly suppressed oxidative stress [heme oxygenase-1 expression and malondialdehyde (the product of lipid ROS reaction)] in neurons and alleviated ischemia-induced neuronal cell death, compared to Fer1 alone without encapsulation. Furthermore, T-LNPs-Fer1 significantly reduced cerebral infarction and improved behavior functions compared to Fer1-treated cerebral ischemic mice after 45-min ischemia/24-h reperfusion. These findings showed that the T-LNPs helped Fer1 penetrate the BBB and improved the neuroprotection of Fer1 against cerebral ischemic damage in experimental stroke, providing a feasible translational strategy for the development of clinical drugs for the treatment of ischemic stroke.

16.
Brain Res ; 1816: 148464, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37328087

ABSTRACT

BACKGROUND: Recanalization is the main treatment option for ischemic stroke. However, prognosis remains poor for about half of patients after recanalization, possibly due to the "no-reflow" phenomenon at the early phase of recanalization. Normobaric oxygenation (NBO) during ischemia can reportedly maintain the partial pressure of oxygen and exert a protective effect in ischemic brain tissue. OBJECTIVES AND METHODS: This study investigated whether prolonged NBO treatment during ischemia and the early phase of reperfusion (i/rNBO) has neuroprotective effects and to elucidate the underlying mechanisms in rats with middle cerebral artery occlusion plus reperfusion. RESULTS: NBO treatment significantly elevated the level of O2 in the atmosphere and arterial blood without altering the level of CO2. The infarcted cerebral volume was significantly reduced by application of i/rNBO as compared to iNBO (applied during ischemia) or rNBO (applied at the early phase of reperfusion), indicating better protective effects of i/rNBO. i/rNBO more effectively suppressed s-nitrosylation of MMP-2 (amplifying inflammation) as compared to iNBO and rNBO, dramatically downregulated the cleavage of poly(ADP-ribose)polymerase-1 (PARP-1, acting as the substrate of MMP-2), and suppressed neuronal apoptosis, as determined by the TUNEL assay and staining for NeuN. These results demonstrated that application of i/rNBO in the early stage of reperfusion significantly alleviated neuronal apoptosis via suppression of the MMP-2/PARP-1 pathway. CONCLUSIONS: The mechanism underlying the neuroprotective role of i/rNBO involved prolonged NBO treatment for cerebral ischemia, suggesting that i/rNBO may allow expansion of the time window for NBO application in stroke patients following vascular recanalization.

17.
Front Cell Neurosci ; 17: 1065873, 2023.
Article in English | MEDLINE | ID: mdl-36970418

ABSTRACT

Intracellular zinc accumulation has been shown to be associated with neuronal death after cerebral ischemia. However, the mechanism of zinc accumulation leading to neuronal death in ischemia/reperfusion (I/R) is still unclear. Intracellular zinc signals are required for the production of proinflammatory cytokines. The present study investigated whether intracellular accumulated zinc aggravates I/R injury through inflammatory response, and inflammation-mediated neuronal apoptosis. Male Sprague-Dawley rats were treated with vehicle or zinc chelator TPEN 15 mg/kg before a 90-min middle cerebral artery occlusion (MCAO). The expressions of proinflammatory cytokines TNF-α, IL-6, NF-κB p65, and NF-κB inhibitory protein IκB-α, as well as anti-inflammatory cytokine IL-10 were assessed at 6 or 24 h after reperfusion. Our results demonstrated that the expression of TNF-α, IL-6, and NF-κB p65 increased after reperfusion, while the expression of IκB-α and IL-10 decreased, suggesting that cerebral ischemia triggers inflammatory response. Furthermore, TNF-α, NF-κB p65, and IL-10 were all colocalized with the neuron-specific nuclear protein (NeuN), suggesting that the ischemia-induced inflammatory response occurs in neurons. Moreover, TNF-α was also colocalized with the zinc-specific dyes Newport Green (NG), suggesting that intracellular accumulated zinc might be associated with neuronal inflammation following cerebral I/R. Chelating zinc with TPEN reversed the expression of TNF-α, NF-κB p65, IκB-α, IL-6, and IL-10 in ischemic rats. Besides, IL-6-positive cells were colocalized with TUNEL-positive cells in the ischemic penumbra of MCAO rats at 24 h after reperfusion, indicating that zinc accumulation following I/R might induce inflammation and inflammation-associated neuronal apoptosis. Taken together, this study demonstrates that excessive zinc activates inflammation and that the brain injury caused by zinc accumulation is at least partially due to specific neuronal apoptosis induced by inflammation, which may provide an important mechanism of cerebral I/R injury.

18.
Aging Dis ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37962463

ABSTRACT

Zinc plays important roles in both physiological and pathological processes in the brain. Accumulation of free zinc in ischemic tissue is recognized to contribute to blood-brain barrier (BBB) disruption following cerebral ischemia, but little is known either about the source of free zinc in microvessels or the mechanism by which free zinc mediates ischemia-induced BBB damage. We utilized cellular and animal models of ischemic stroke to determine the source of high levels of free zinc and the mechanism of free zinc-mediated BBB damage after ischemia. We report that cerebral ischemia elevated the level of extracellular fluid (ECF-Zn) of ischemic brain, leading to exacerbated BBB damage in a rat stroke model. Specifically suppressing zinc release from neurons, utilizing neuronal-specific zinc transporter 3 (ZnT3) knockout mice, markedly reduced ECF-Zn and BBB permeability after ischemia. Intriguingly, the activity of zinc-dependent metalloproteinase-2 (MMP-2) was modulated by ECF-Zn levels. Elevated ECF-Zn during ischemia directly bound to MMP-2 in extracellular fluid, increased its zinc content and augmented MMP-2 activity, leading to the degradation of tight junction protein in cerebral microvessels and BBB disruption. These findings suggest the role of neuronal ZnT3 in modulating ischemia-induced BBB disruption and reveal a novel mechanism of MMP-2 activation in BBB disruption after stroke, demonstrating ZnT3 as an effective target for stroke treatment.

19.
CNS Neurosci Ther ; 28(10): 1509-1518, 2022 10.
Article in English | MEDLINE | ID: mdl-35698913

ABSTRACT

INTRODUCTION: Acute cerebral ischemia is caused by an insufficient blood supply to brain tissue. Oxygen therapy, which is able to aid diffusion to reach the ischemic region, has been regarded as a possible treatment for cerebral ischemia. Recent animal and pilot clinical studies have reported that normobaric hyperoxia (NBO) showed neuroprotective effects if started soon after the onset of stroke. However, little is known about the role and mechanism of NBO treatment in astrocytes. Connexin43, one of the main gap junction proteins in astrocytes, is extremely sensitive to hypoxia and oxidative stress after cerebral ischemia. AIMS: In the present study, we used sutures to develop an ischemia/reperfusion model in rats to mimic clinical recanalization and investigated the role of connexin43 in NBO-treated stroke rats, as well as the underlying mechanism of NBO therapy. RESULTS: Normobaric hyperoxia treatment maintained the homeostasis of oxidoreductases: glutathione peroxidase 4 (GPX4) and NADPH oxidase 4 (two important oxidoreductases) and rescued the ischemia/reperfusion-induced downregulation of connexin43 protein in astrocytes. Furthermore, NBO treatment attenuated cerebral ischemia-induced cytochrome c release from mitochondria and was involved in neuroprotective effects by regulating the GPX4 and connexin43 pathway, using Ferrostatin-1 (an activator of GPX4) or Gap27 (an inhibitor of connexin43). CONCLUSIONS: This study showed the neuroprotective effects of NBO treatment by reducing oxidative stress and maintaining the level of connexin43 in astrocytes, which could be used for the clinical treatment of ischemic stroke.


Subject(s)
Brain Ischemia , Hyperoxia , Neuroprotective Agents , Stroke , Animals , Astrocytes/metabolism , Brain Ischemia/metabolism , Connexin 43/metabolism , Connexin 43/therapeutic use , Homeostasis , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidation-Reduction , Oxidoreductases/metabolism , Oxidoreductases/therapeutic use , Rats , Rats, Sprague-Dawley , Stroke/therapy
20.
Neurology ; 99(8): e824-e834, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35715198

ABSTRACT

BACKGROUND AND OBJECTIVES: To investigate the safety and efficacy of normobaric hyperoxia (NBO) combined with endovascular treatment (EVT) in patients with acute ischemic stroke (AIS). METHODS: In this single-center, proof-of-concept, assessor-blinded, randomized, controlled pilot study, patients with AIS in the acute anterior circulation with large vessel occlusion who had an indication for EVT were randomly assigned to the EVT group or the NBO + EVT group. The NBO + EVT group was given 100% oxygen through a face mask initiated before vascular recanalization (10L/min for 4 hours), while the EVT group was given room air. The primary endpoint was infarct volume measured by MRI within 24-48 hours after randomization. RESULTS: A total of 231 patients were screened, and 86 patients were randomized into a ratio of 1:1 (EVT group, n = 43; NBO + EVT group, n = 43). The median infarction volume of the NBO + EVT group at 24-48 hours after randomization was significantly smaller than that of the EVT group (median 20.1 vs 37.7 mL, p < 0.01). The median mRS score at 90 days was 2 for the NBO + EVT group when compared with 3 for the EVT group (adjusted value 1.8, 95% CI 1.3-4.2; p = 0.038). Compared with the EVT group, the NBO + EVT group had a lower incidence of symptomatic intracranial hemorrhagic (7% vs 12%), mortality (9% vs 16%), and adverse events (33% vs 42%); however, such a difference was not statistically significant. DISCUSSION: NBO in combination with EVT seems to be a safe and feasible treatment strategy that could significantly reduce infarct volume, improve short-term neurobehavioral test score, and enhance clinical outcomes at 90 days when compared with EVT alone in patients with AIS. These observations need to be further confirmed by a large, multicenter, randomized clinical trial. CLINICAL TRIALS REGISTRATION: NCT03620370. CLASSIFICATION OF EVIDENCE: This pilot study provides Class I evidence that NBO combined with standard EVT decreases infarction volume in patients with acute anterior circulation stroke.


Subject(s)
Brain Ischemia , Endovascular Procedures , Hyperoxia , Ischemic Stroke , Stroke , Brain Ischemia/complications , Endovascular Procedures/adverse effects , Humans , Hyperoxia/complications , Infarction/complications , Oxygen , Pilot Projects , Stroke/etiology , Stroke/therapy , Thrombectomy/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL