Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 27(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080342

ABSTRACT

The microstructure of a mixed KCl and K2SO4 aqueous solution was studied using X-ray scattering (XRS), Raman spectroscopy, and molecular dynamics simulation (MD). Reduced structure functions [F(Q)], reduced pair distribution functions [G(r)], Raman spectrum, and pair distribution functions (PDF) were obtained. The XRS results show that the main peak (r = 2.81 Å) of G(r) shifted to the right of the axis (r = 3.15 Å) with increased KCl and decreased K2SO4. The main peak was at r = 3.15 Å when the KCl concentration was 26.00% and the K2SO4 concentration was 0.00%. It is speculated that this phenomenon was caused by the main interaction changing, from K-OW (r = 2.80 Å) and OW-OW (r = 2.80 Å), to Cl−-OW (r = 3.14 Å) and K+-Cl− (r = 3.15 Å). According to the trend of the hydrogen bond structure in the Raman spectrum, when the concentration of KCl was high and K2SO4 was low, the destruction of the tetrahedral hydrogen bond network in the solution was more serious. This shows that the destruction strength of the anion to the hydrogen bond network structure in solution was Cl− > SO42−. In the MD simulations, the coordination number of OW-OW decreased with increasing KCl concentration, indicating that the tetrahedral hydrogen bond network was severely disrupted, which confirmed the results of the Raman spectroscopy. The hydration radius and coordination number of SO42− in the mixed solution were larger than Cl−, thus revealing the reason why the solubility of KCl in water was greater than that of K2SO4 at room temperature.


Subject(s)
Molecular Dynamics Simulation , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Sulfates , Water/chemistry , X-Rays
2.
J Hazard Mater ; 474: 134837, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850945

ABSTRACT

Multi-component droplets from daily activities and production processes severely degrade indoor air quality. Their health hazards and removal efficiency depend on size and composition, significantly affected by evaporation and growth. The phase transition process is complex, involving a broad spectrum of droplet sizes with diverse heat and mass transfer characteristics. Components within the droplets experience simultaneous phase transitions at differing rates and mass transfer directions. This study aims to refine the existing evaporation model of single-component droplets in continuous flows by theoretically integrating the effects of varying droplet sizes and multiple components. A multi-component droplet evaporation/growth model that spans the entire range of droplet sizes has been developed, and predictions have been made based on this model. Utilizing MATLAB, this model accurately predicts the indoor dynamics of multi-component droplets, with deviations under 16 % from experiments. It improves accuracy by over 25 % across droplet sizes via dimensionless transfer coefficients and boosts precision by over 24 % for multi-component droplets with zero-diffusion transport. The radius of the droplet after phase change can reach 8.42 × 10-6 m and remains suspended in the air for an extended period. This study establishes a solid theoretical foundation for accurately predicting the indoor distribution of multi-component droplets.

3.
J Phys Chem B ; 128(1): 208-221, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38113228

ABSTRACT

Aqueous solutions of magnesium chloride (MgCl2(aq)) are often used to test advances in the theory of electrolyte solutions because they are considered an ideal strong 2:1 electrolyte. However, there is evidence that some ion association occurs in these solutions, even at low concentrations. Even a small ion-pairing constant can have a significant impact on the chemical speciation of ions, so it is important to determine whether ion pairing actually occurs. In this study, MgCl2(aq) with concentrations ranging from 1 to 35% was studied using three methods: X-ray scattering (XRS) with the Shanghai Synchrotron Radiation Facility (SSRF) and silver-anode laboratory sources, Raman spectroscopy, and molecular dynamics (MD) simulations with the COMPASS-II and Madrid force fields. XRS results were analyzed in the framework of PDF theory to obtain the reduced structure function F(Q) and the reduced pair distribution function G(r). The F(Q) values from synchrotron radiation and laboratory sources both showed that the tetrahedral hydrogen bonds in bulk water were destroyed with the increased MgCl2 concentration. The results of G(r) indicated that the main peaks centered at 2.05 and 2.80 Å can be ascribed to the interactions of Mg-O and O-O, respectively. The peak at 3.10 Å is attributed to the combined effect of O-O and Cl-O. By comparing the structural information on MgCl2 solution obtained from the two light sources, it was found that both SSRF and silver-anode laboratory sources can reflect the above-mentioned structural information on MgCl2 solution. The radial distribution function (RDF) obtained from MD simulations of MgCl2 solutions assigned the peaks at 2.0, 2.8, and 3.2 Å to the Mg-O, O-O, and Cl-O interatomic pairs, respectively. The decrease in the O-O coordination number confirms that the hydrogen-bonding network of water is disrupted by increasing MgCl2 observed by X-ray scattering. The proportion of Mg-Cl contact ion pairs gradually increases with MgCl2 concentration as does the coordination number. Raman spectroscopy results show that the bond type changes from double donor double acceptor (DDAA) to single donor-single acceptor (DA) with increasing concentration, providing explicit details of the hydrogen-bond evolution in the aqueous solution.

4.
J Ginseng Res ; 44(2): 205-214, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32148401

ABSTRACT

BACKGROUND: This article aims to compare and analyze the contents of ginsenosides in ginseng of different plant ages from different localities in China. METHODS: In this study, 77 fresh ginseng samples aged 2-4 years were collected from 13 different cultivation regions in China. The content of eight ginsenosides (Rg3, Rc, Rg1, Rf, Rb2, Rb1, Re, and Rd) was determined using rapid resolution liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (RRLC-Q-TOF MS/MS) to comparatively evaluate the influences of cultivation region and age. RESULTS: Ginsenoside contents differed significantly depending on age and cultivation region. The contents of ginsenosides Re, Rc, Rg1, Rg3, and Rf increased with cultivation age, whereas that of ginsenoside Rb1 peaked in the third year of cultivation. Moreover, the highest ginsenoside content was obtained from Changbai (19.36 mg/g) whereas the lowest content was obtained from Jidong (12.05 mg/g). Ginseng from Jilin Province contained greater total ginsenosides and was richer in ginsenoside Re than ginseng of the same age group in Heilongjiang and Liaoning provinces, where Rb1 and Rg1 contents were relatively high. CONCLUSION: In this study, RRLC-Q-TOF MS/MS was used to analyze ginsenoside contents in 77 ginseng samples aged 2-4 years from different cultivation regions. These patterns of variation in ginsenoside content, which depend on harvesting location and age, could be useful for interested parties to choose ginseng products according to their needs.

SELECTION OF CITATIONS
SEARCH DETAIL