Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Virol ; : e0034224, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028202

ABSTRACT

The recurrent spillovers of coronaviruses (CoVs) have posed severe threats to public health and the global economy. Bat severe acute respiratory syndrome (SARS)-like CoVs RsSHC014 and WIV1, currently circulating in bat populations, are poised for human emergence. The trimeric spike (S) glycoprotein, responsible for receptor recognition and membrane fusion, plays a critical role in cross-species transmission and infection. Here, we determined the cryo-electron microscopy (EM) structures of the RsSHC014 S protein in the closed state at 2.9 Å, the WIV1 S protein in the closed state at 2.8 Å, and the intermediate state at 4.0 Å. In the intermediate state, one receptor-binding domain (RBD) is in the "down" position, while the other two RBDs exhibit poor density. We also resolved the complex structure of the WIV1 S protein bound to human ACE2 (hACE2) at 4.5 Å, which provides structural basis for the future emergence of WIV1 in humans. Through biochemical experiments, we found that despite strong binding affinities between the RBDs and both human and civet ACE2, the pseudoviruses of RsSHC014, but not WIV1, failed to infect 293T cells overexpressing either human or civet ACE2. Mutagenesis analysis revealed that the Y623H substitution, located in the SD2 region, significantly improved the cell entry efficiency of RsSHC014 pseudoviruses, which is likely accomplished by promoting the open conformation of spike glycoproteins. Our findings emphasize the necessity of both efficient RBD lifting and tight RBD-hACE2 binding for viral infection and underscore the significance of the 623 site of the spike glycoprotein for the infectivity of bat SARS-like CoVs. IMPORTANCE: The bat SARS-like CoVs RsSHC014 and WIV1 can use hACE2 for cell entry without further adaptation, indicating their potential risk of emergence in human populations. The S glycoprotein, responsible for receptor recognition and membrane fusion, plays a crucial role in cross-species transmission and infection. In this study, we determined the cryo-EM structures of the S glycoproteins of RsSHC014 and WIV1. Detailed comparisons revealed dynamic structural variations within spike proteins. We also elucidated the complex structure of WIV1 S-hACE2, providing structural evidence for the potential emergence of WIV1 in humans. Although RsSHC014 and WIV1 had similar hACE2-binding affinities, they exhibited distinct pseudovirus cell entry behavior. Through mutagenesis and cryo-EM analysis, we revealed that besides the structural variations, the 623 site in the SD2 region is another important structural determinant of spike infectivity.

2.
J Virol ; 95(19): e0101921, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287044

ABSTRACT

Based on our previous studies, we show that the M gene is critical for the replication and pathogenicity of the chimeric H17 bat influenza virus (Bat09:mH1mN1) by replacing the bat M gene with those from human and swine influenza A viruses. However, the key amino acids of the M1 and/or M2 proteins that are responsible for virus replication and pathogenicity remain unknown. In this study, replacement of the PR8 M gene with the Eurasian avian-like M gene from the A/California/04/2009 pandemic H1N1 virus significantly decreased viral replication in both mammalian and avian cells in the background of the chimeric H17 bat influenza virus. Further studies revealed that M1 was more crucial for viral growth and pathogenicity than M2 and that the amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins identified in this study might be important for influenza virus surveillance and could be used to produce live attenuated vaccines in the future. IMPORTANCE The M1 and M2 proteins influence the morphology, replication, virulence, and transmissibility of influenza viruses. Although a few key residues in the M1 and M2 proteins have been identified, whether other residues of the M1 and M2 proteins are involved in viral replication and pathogenicity remains to be discovered. In the background of the chimeric H17 bat influenza virus, the Eurasian avian-like M gene from the A/California/04/2009 virus significantly decreased viral growth in mammalian and avian cells. Further study showed that M1 was implicated more than M2 in viral growth and pathogenicity in vitro and in vivo and that the key amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins could be used for influenza virus surveillance and live attenuated vaccine applications in the future. These findings provide important contributions to knowledge of the genetic basis of the virulence of influenza viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/virology , Orthomyxoviridae/growth & development , Orthomyxoviridae/pathogenicity , Viral Matrix Proteins/metabolism , Amino Acids/metabolism , Animals , Cell Line , Chiroptera , Genes, Viral , Humans , Lung/virology , Mice , Orthomyxoviridae/genetics , Reassortant Viruses/genetics , Reassortant Viruses/growth & development , Reassortant Viruses/pathogenicity , Turbinates/virology , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virulence , Virus Replication
3.
Microb Pathog ; 157: 104992, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34044053

ABSTRACT

Previous studies have shown that chimeric bat influenza viruses can be generated by reverse genetic system. However, the roles of the surface or internal genes of chimeric bat influenza viruses in viral replication and virulence in different host species were still not completely understood. In this study, we generated a chimeric H9N2 bat virus with both HA and NA surface genes from the avian A2093/H9N2 virus and compared its replication and virulence with the chimeric H1N1 bat virus with both HA and NA from the PR8/H1N1 virus in vitro and in mice. The chimeric H1N1 virus showed significantly higher replication in mammalian and avian cells and significantly higher virulence in mice than the chimeric H9N2 virus. Moreover, the chimeric H9N2 virus with the bat influenza internal M gene showed a higher replication in mammalian cells than in avian cells. While the chimeric H9N2 virus with the avian-origin viral M gene displayed a higher replication than that with the bat influenza M gene in avian cells, which likely resulted from increased receptor binding ability to α 2,3 sialic acid linked glycans of the former virus. Our study indicates that bat influenza internal genes are permissive in both mammalian and avian cells, and the bat influenza internal M gene shows more compatibility in mammals than in the avian host. Although the surface genes play more critical roles for viral replication in different host substrates, influenza M gene also potentially impacts on replication, virulence and host tropism.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Orthomyxoviridae Infections , Animals , Influenza A Virus, H9N2 Subtype/genetics , Mammals , Mice , Orthomyxoviridae Infections/veterinary , Virulence , Virus Replication
4.
FEBS Open Bio ; 12(9): 1602-1622, 2022 09.
Article in English | MEDLINE | ID: mdl-35689514

ABSTRACT

Highly pathogenic human coronaviruses (CoV) including SARS-CoV, MERS-CoV and SARS-CoV-2 have emerged over the past two decades, resulting in infectious disease outbreaks that have greatly affected public health. The CoV surface spike (S) glycoprotein mediates receptor binding and membrane fusion for cell entry, playing critical roles in CoV infection and evolution. The S glycoprotein is also the major target molecule for prophylactic and therapeutic interventions, including neutralizing antibodies and vaccines. In this review, we summarize key studies that have revealed the structural basis of S-mediated cell entry of SARS-CoV, MERS-CoV and SARS-CoV-2. Additionally, we discuss the evolution of the S glycoprotein to realize cross-species transmission from the viewpoint of structural biology. Lastly, we describe the recent progress in developing antibodies, nanobodies and peptide inhibitors that target the SARS-CoV-2 S glycoprotein for therapeutic purposes.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Spike Glycoprotein, Coronavirus , Humans , Middle East Respiratory Syndrome Coronavirus/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization
5.
Nat Commun ; 12(1): 1607, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707453

ABSTRACT

In recognizing the host cellular receptor and mediating fusion of virus and cell membranes, the spike (S) glycoprotein of coronaviruses is the most critical viral protein for cross-species transmission and infection. Here we determined the cryo-EM structures of the spikes from bat (RaTG13) and pangolin (PCoV_GX) coronaviruses, which are closely related to SARS-CoV-2. All three receptor-binding domains (RBDs) of these two spike trimers are in the "down" conformation, indicating they are more prone to adopt the receptor-binding inactive state. However, we found that the PCoV_GX, but not the RaTG13, spike is comparable to the SARS-CoV-2 spike in binding the human ACE2 receptor and supporting pseudovirus cell entry. We further identified critical residues in the RBD underlying different activities of the RaTG13 and PCoV_GX/SARS-CoV-2 spikes. These results collectively indicate that tight RBD-ACE2 binding and efficient RBD conformational sampling are required for the evolution of SARS-CoV-2 to gain highly efficient infection.


Subject(s)
COVID-19/virology , Chiroptera/virology , Coronavirus/chemistry , Coronavirus/genetics , Pangolins/virology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Animals , COVID-19/epidemiology , COVID-19/transmission , Cryoelectron Microscopy , Evolution, Molecular , Host Microbial Interactions , Humans , Models, Molecular , Pandemics , Protein Domains , Sequence Homology, Amino Acid , Species Specificity , Spike Glycoprotein, Coronavirus/ultrastructure
6.
Nat Commun ; 11(1): 3070, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32555182

ABSTRACT

Porcine coronavirus SADS-CoV has been identified from suckling piglets with severe diarrhea in southern China in 2017. The SADS-CoV genome shares ~95% identity to that of bat α-coronavirus HKU2, suggesting that SADS-CoV may have emerged from a natural reservoir in bats. Here we report the cryo-EM structures of HKU2 and SADS-CoV spike (S) glycoprotein trimers at 2.38 Å and 2.83 Å resolution, respectively. We systematically compare the domains of HKU2 spike with those of α-, ß-, γ-, and δ-coronavirus spikes, showing that the S1 subunit N- and C-terminal domains of HKU2/SADS-CoV are ancestral domains in the evolution of coronavirus spike proteins. The connecting region after the fusion peptide in the S2 subunit of HKU2/SADS-CoV adopts a unique conformation. These results structurally demonstrate a close evolutionary relationship between HKU2/SADS-CoV and ß-coronavirus spikes and provide insights into the evolution and cross-species transmission of coronaviruses.


Subject(s)
Alphacoronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , Cell Line , Chiroptera , Coronavirus Infections , Cryoelectron Microscopy , Evolution, Molecular , Glycoproteins/ultrastructure , Humans , Models, Molecular , Protein Domains , Swine
SELECTION OF CITATIONS
SEARCH DETAIL