Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Physiol ; 194(4): 2709-2723, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38206193

ABSTRACT

Plants and their associated microbes live in complicated, changeable, and unpredictable environments. They usually interact with each other in many ways through multidimensional, multiscale, and multilevel coupling manners, leading to challenges in the coexistence of randomness and determinism or continuity and discreteness. Gaining a deeper understanding of these diverse interaction mechanisms can facilitate the development of data-mining theories and methods for complex systems, coupled modeling for systems with different spatiotemporal scales and functional properties, or even a universal theory of information and information interactions. In this study, we use a "closed-loop" model to present a plant-microbe interaction system and describe the probable functions of microbial natural products. Specifically, we report a rhizosphere species, Streptomyces ginsengnesis G7, which produces polyketide lydicamycins and other active metabolites. Interestingly, these distinct molecules have the potential to function both as antibiotics and as herbicides for crop protection. Detailed laboratory experiments conducted in Arabidopsis (Arabidopsis thaliana), combined with a comprehensive bioinformatics analysis, allow us to rationalize a model for this specific plant-microbe interaction process. Our work reveals the benefits of exploring otherwise neglected resources for the identification of potential functional molecules and provides a reference to better understand the system biology of complex ecosystems.


Subject(s)
Arabidopsis , Microbiota , Panax , Streptomyces , Rhizosphere , Plants/metabolism , Soil Microbiology
2.
BMC Genomics ; 25(1): 36, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182984

ABSTRACT

BACKGROUND: Hollow heart is a kind of physiological defect that seriously affects the yield, quality, and economic value of cucumber. However, the formation of hollow hearts may relate to multiple factors in cucumber, and it is necessary to conduct analysis. RESULTS: In this study, hollow and non-hollow fruits of cucumber K07 were used for comparative transcriptome sequencing and analysis. 253 differentially expressed genes and 139 transcription factors were identified as being associated with the formation of hollow hearts. Hormone (auxin) signaling and cell wall biosynthesis were mainly enriched in GO and KEGG pathways. Expression levels of key genes involved in indole-3-acetic acid biosynthesis in carpel were lower in the hollow fruits than non-hollow fruits, while there was no difference in the flesh. The concentration of indole-3-acetic also showed lower in the carpel than flesh. The biosynthetic pathway and content analysis of the main components of the cell wall found that lignin biosynthesis had obvious regularity with hollow heart, followed by hemicellulose and cellulose. Correlation analysis showed that there may be an interaction between auxin and cell wall biosynthesis, and they collectively participate in the formation of hollow hearts in cucumber. Among the differentially expressed transcription factors, MYB members were the most abundant, followed by NAC, ERF, and bHLH. CONCLUSIONS: The results and analyses showed that the low content of auxin in the carpel affected the activity of enzymes related to cell wall biosynthesis at the early stage of fruit development, resulting in incomplete development of carpel cells, thus forming a hollow heart in cucumber. Some transcription factors may play regulatory roles in this progress. The results may enrich the theory of the formation of hollow hearts and provide a basis for future research.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Transcriptome , Indoleacetic Acids , Gene Expression Profiling , Cell Wall , Transcription Factors/genetics
3.
Appl Environ Microbiol ; 90(3): e0233523, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38376235

ABSTRACT

Panax ginseng, a prized medicinal herb, has faced increasingly challenging field production due to soil degradation and fungal diseases in Northeast China. Wild-simulated cultivation has prevailed because of its sustainable soil management and low disease incidence. Despite the recognized benefits of rhizosphere microorganisms in ginseng cultivation, their genomic and functional diversity remain largely unexplored. In this work, we utilized shotgun metagenomic analysis to reveal that Pseudomonadota, Actinomycetota, and Acidobacteriota were dominant in the ginseng rhizobiome and recovered 14 reliable metagenome-assembled genomes. Functional analysis indicated an enrichment of denitrification-associated genes, potentially contributing to the observed decline in soil fertility, while genes associated with aromatic carbon degradation may be linked to allelochemical degradation. Further analysis demonstrated enrichment of Actinomycetota in 9-year-old wild-simulated ginseng (WSG), suggesting the need for targeted isolation of Actinomycetota bacteria. Among these, at least three different actinomycete strains were found to play a crucial role in fungal disease resistance, with Streptomyces spp. WY144 standing out for its production of actinomycin natural products active against the pathogenic fungus Ilyonectria robusta. These findings not only enhance our understanding of the rhizobiome of WSG but also present promising avenues for combating detrimental fungal pathogens, underscoring the importance of ginseng in both medicinal and agricultural contexts.IMPORTANCEWild-simulated ginseng, growing naturally without human interference, is influenced by its soil microbiome. Using shotgun metagenomics, we analyzed the rhizospheric soil microbiome of 7- and 9-year-old wild-simulated ginseng. The study aimed to reveal its composition and functions, exploring the microbiome's key roles in ginseng growth. Enrichment analysis identified Streptomycetes in ginseng soil, with three strains inhibiting plant pathogenic fungi. Notably, one strain produced actinomycins, suppressing the ginseng pathogenic fungus Ilyonectria robusta. This research accelerates microbiome application in wild-simulated ginseng cultivation, offering insights into pathogen protection and supporting microbiome utilization in agriculture.


Subject(s)
Hypocreales , Microbiota , Panax , Streptomyces , Humans , Child , Panax/microbiology , Soil/chemistry , Rhizosphere , Metagenome , Soil Microbiology
4.
Crit Rev Food Sci Nutr ; 63(21): 5430-5445, 2023.
Article in English | MEDLINE | ID: mdl-34955061

ABSTRACT

Last several years, a rapid increase in drug resistance to traditional antibiotics has driven the emergence and development of antimicrobial peptides (AMPs). AMPs have also gained considerable attention from scientists due to their high potency in combatting infectious pathogens. A subset of analogues and their derivatives with specific targets have been successfully designed based on natural peptide patterns. In this review, scientific knowledge on the mechanisms of action related to biological activity and structure-activity relationship (SAR) of AMPs are summarized, and the biological applications in several important fields are critically discussed. SAR shows that the positive charge, secondary structure, special amino acid residues, hydrophobicity, and helicity of AMPs are closely related to their biological activities. The combination of nanotechnology, bioinformatics, and genetic engineering can accelerate to achieve the application of AMPs as effective, safe, economical, and nonresistant antimicrobial agents in medicine, the food and feed industries, and agriculture in coming years. Given the intense interest in AMPs, further investigations are needed in the future to evaluate the specific structure and function that make their use favorable in several industries. This review may provide a comprehensive reference for future studies on chemical modifications, mechanistic exploration, and applications of AMPs.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Antimicrobial Cationic Peptides/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Structure-Activity Relationship
5.
Crit Rev Food Sci Nutr ; 63(24): 7091-7107, 2023.
Article in English | MEDLINE | ID: mdl-35199615

ABSTRACT

Prunus mume Sieb. Et Zucc (P. mume) is an acidic fruit native to China (named Chinese Mei or greengage plum). It is currently cultivated in several Asian countries, including Japan ("Ume"), Korea (Maesil), and Vietnam (Mai or Mo). Due to its myriad nutritional and functional properties, it is accepted in different countries, and its characteristics account for its commercialization. In this review, we summarize the information on the bioactive compounds from the fruit of P. mume and their structure-activity relationships (SAR); the pulp has the highest enrichment of bioactive chemicals. The nutritional properties of P. mume and the numerous uses of its by-products make it a potential functional food. P. mume extracts exhibit antioxidant, anticancer, antimicrobial, and anti-hyperuricaemic properties, cardiovascular protective effects, and hormone regulatory properties in various in vitro and in vivo assays. SAR shows that the water solubility, molecular weight, and chemical conformation of P. mume extracts are closely related to their biological activity. However, further studies are needed to evaluate the fruit's potential nutritional and functional therapeutic mechanisms. The industrial process of large-scale production of P. mume and its extracts as functional foods or nutraceuticals needs to be further optimized.


Subject(s)
Prunus , Prunus/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis , Structure-Activity Relationship , Dietary Supplements
6.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983023

ABSTRACT

Auxin serves as an essential regulator of the expression of many different genes in plants, thereby regulating growth and development. The specific functional roles of members of the SAUR (small auxin-up RNA) auxin early response gene family in the development of cucumber plants, however, remain to be fully clarified. Here, 62 SAUR family genes were identified, followed by their classification into 7 groups that included several functionally associated cis-regulatory elements. Phylogenetic tree and chromosomal location-based analyses revealed a high degree of homology between two cucumber gene clusters and other plants in the Cucurbitaceae family. These findings, together with the results of an RNA-seq analysis, revealed high levels of CsSAUR31 expression within the root and male flower tissues. Plants overexpressing CsSAUR31 exhibited longer roots and hypocotyls. Together, these results provide a basis for further efforts to explore the roles that SAUR genes play in cucumber plants, while also expanding the pool of available genetic resources to guide research focused on plant growth and development.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Cucumis sativus/metabolism , Phylogeny , Indoleacetic Acids/metabolism , Multigene Family , RNA , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(2): 217-225, 2023 Apr 25.
Article in Zh | MEDLINE | ID: mdl-37139751

ABSTRACT

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. Neuroimaging based on magnetic resonance imaging (MRI) is one of the most intuitive and reliable methods to perform AD screening and diagnosis. Clinical head MRI detection generates multimodal image data, and to solve the problem of multimodal MRI processing and information fusion, this paper proposes a structural and functional MRI feature extraction and fusion method based on generalized convolutional neural networks (gCNN). The method includes a three-dimensional residual U-shaped network based on hybrid attention mechanism (3D HA-ResUNet) for feature representation and classification for structural MRI, and a U-shaped graph convolutional neural network (U-GCN) for node feature representation and classification of brain functional networks for functional MRI. Based on the fusion of the two types of image features, the optimal feature subset is selected based on discrete binary particle swarm optimization, and the prediction results are output by a machine learning classifier. The validation results of multimodal dataset from the AD Neuroimaging Initiative (ADNI) open-source database show that the proposed models have superior performance in their respective data domains. The gCNN framework combines the advantages of these two models and further improves the performance of the methods using single-modal MRI, improving the classification accuracy and sensitivity by 5.56% and 11.11%, respectively. In conclusion, the gCNN-based multimodal MRI classification method proposed in this paper can provide a technical basis for the auxiliary diagnosis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Humans , Alzheimer Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Networks, Computer
8.
Opt Express ; 30(26): 46870-46887, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558628

ABSTRACT

In this study, we propose a parallel processing method for analyzing video-image radiation-response signals and suppressing radiation noise. We studied the linear-representation law of various image-information components on the radiation dose rate. Subsequently, the simulation images were used to examine the response-signal extract and radiation-noise suppression. The results indicate that the majority of response signals in the global image comprise forward superposition. The peak signal-to-noise ratio of the red channel was significantly improved when the noise signal-substitution algorithm and median filter were applied successively. Real-time radiation dose-rate measurements and clear images under irradiation can be obtained simultaneously.

9.
Ecotoxicol Environ Saf ; 242: 113894, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35872489

ABSTRACT

Chlorpyrifos, a broadly utilized insecticide, inhibits many cellular and physiological processes in plants. Here, the phyto-toxicity of chlorpyrifos on cucumber plants, as well as the dissipation kinetics of chlorpyrifos in leaves, were investigated. Those results showed that chlorpyrifos accumulated primarily in the leaves under normal agrochemical spraying conditions with the half-lives among 2.48-4.59 days. Residues of the primary metabolite, 3,5,6-trichloro-2-pyridinol (TCP), rapidly accumulated in plant tissues and soil with chlorpyrifos degradation. The application amount of chlorpyrifos had a significant effect on the persistence of chlorpyrifos and TCP in both plant and soil environments. Chlorpyrifos generated excessive reactive oxygen species (ROS) and malondialdehyde (MDA), which led to oxidative damage. High chlorpyrifos stress even inhibited antioxidant enzymes. The photosynthetic system and gas exchange were suppressed, which ultimately lead to inefficient light use under chlorpyrifos stress. Morphological results revealed that chlorpyrifos induced membrane damage and harmed organelles such as mitochondria and chloroplast. Noninvasive micro-test technology (NMT) showed that chlorpyrifos promoted intracellular Ca2+ influx and efflux of H+ and K+. The Ca2+ influx was significantly stimulated after both high and low chlorpyrifos treatment with the minimum value of - 336.33 pmol·cm-2·s-1 at 258 s and - 155.68 pmol·cm-2·s-1 at 288 s, respectively. Chlorpyrifos stress reversed the H+ influx to an efflux in cucumber mesophyll with the mean value of 0.45 ± 0.03 pmol·cm-2·s-1 and 0.19 ± 0.03 pmol·cm-2·s-1 in cucumber plants under low and high chlorpyrifos stress. High chlorpyrifos stress dramatically increase K+ efflux in cucumber leaves by 13.68 times higher than the control. We suggest that ion homeostasis destruction, accompanied by ROS, resulted in oxidative damage to the mesophyll cell of cucumber seedlings.


Subject(s)
Chlorpyrifos , Cucumis sativus , Insecticides , Chlorpyrifos/chemistry , Cucumis sativus/metabolism , Insecticides/analysis , Reactive Oxygen Species/metabolism , Soil
10.
Sensors (Basel) ; 22(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35808311

ABSTRACT

In this paper, we present a calculation method for the radiation response eigenvalue based on a monolithic active pixel sensor. By comparing the statistical eigenvalues of different regions of a pixel array in bright and dark environments, the linear relationship between the statistical eigenvalues obtained by different algorithms and the radiation dose rate was studied. Additionally, a dose rate characterization method based on the analysis of the eigenvalues of the MAPS response signal was proposed. The experimental results show that in the dark background environment, the eigenvalues had a good linear response in the region of any gray value in the range of 10-30. In the color images, due to the difference in the background gray values in adjacent color regions, the radiation response signal in dark regions was confused with the image information in bright regions, resulting in the loss of response signal and affecting the analysis results of the radiation response signal. For the low dose rate radiation field, as the radiation response signal was too weak and there was background dark noise, it was necessary to accumulate frame images to obtain a sufficient response signal. For the intense radiation field, the number of response events in a single image was very high, and only two consecutive frames of image data needed to be accumulated to meet the statistical requirements. The binarization method had a good characterization effect for the radiation at a low dose rate, and the binarization processing and the total gray value statistics of the response data at a high dose rate could better characterize the radiation dose rate. The calibration experiment results show that the binarization processing method can meet the requirements of using a MAPS for wide-range detection.


Subject(s)
Algorithms
11.
Sensors (Basel) ; 22(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336450

ABSTRACT

Herein, we report the γ-ray ionizing radiation response of a commercial monolithic active-pixel sensor (MAPS) camera under strong-dose-rate irradiation with an online detection and monitoring system for strong radiation conditions. We present the first results of the distribution of three types of MAPS camera and establish a linear relationship between the average response signal and radiation dose rate in the strong-dose-rate range. There is an obvious response signal in the video frames when the camera module parameters are set to automatic, but the linear response is very poor. However, the fixed image parameters are not good at adapting to the changes of the environment and affect the quality of the video frames. A dual module online radiation detection and monitoring probe was made to carry out effective video monitoring and radiation detection at the same time. The measurement results show that the dose rate detection error is less than 5% with a dose rate in the range of 60 to 425 Gy/h, and the visible light image does not have obvious distortion, deformation, or color shift due to the interference of the radiation response event and radiation damage. Hence, the system test results show that it can be used for online detection and monitoring in a strong radiation environment.


Subject(s)
Gamma Rays
12.
Fish Shellfish Immunol ; 119: 220-230, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34626790

ABSTRACT

Spotted gar (Lepisosteus oculatus) is a primitive ray-finned fish which has not undergone the third round whole genome duplication and commonly used as a model to study the evolution of immune genes. In this study, a pathogenic strain of Klebsiella pneumoniae (termed KPY01) was isolated from a diseased spotted gar, based on the Gram-stain and phylogenetic analysis of the 16S rDNA and khe genes. Further, the virulence genes and drug resistance genes were determined and drug sensitivity tests were performed to explore the virulence and drug resistance of the KPY01. Putative biosynthetic gene clusters (BGCs) for the biosynthesis of secondary metabolites were predicted using the anti-SMASH5.0 online genome mining platform. Histopathological analysis revealed that the immune cells were significantly decreased in the white pulp of spleen of fish infected with K. pneumonia and tissue inflammation became apparent. Besides, the expression of cytokines including interleukin (il) -8, il-10, il-12a, il-18 and interferon γ (ifn-γ) were shown to be modulated in the spleen, gills and kidney. Our work provides useful information for further investigation on the virulence of K. pneumoniae and host immune responses to K. pneumoniae infection in fish.


Subject(s)
Fishes , Klebsiella pneumoniae , Animals , Fishes/genetics , Genome , Klebsiella pneumoniae/genetics , Phylogeny
13.
BMC Infect Dis ; 21(1): 248, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750333

ABSTRACT

BACKGROUND: Human noroviruses are one of the main causes of foodborne illnesses and represent a serious public health concern. Rapid and sensitive assays for human norovirus detection are undoubtedly necessary for clinical diagnosis, especially in regions without more sophisticated equipment. METHOD: The rapid reverse transcription recombinase-aided amplification (RT-RAA) is a fast, robust and isothermal nucleic acid detection method based on enzyme reaction. This method can complete the sample detection at 39 °C in 30 min. In this study, we successfully established a rapid reverse transcription recombinase-aided amplification (RT-RAA) assay for the detection of human norovirus GII.4 and applied this assay to clinical samples, as well as comparison with commercial reverse transcription real-time fluorescence quantitative PCR (RT-qPCR). RESULTS: At 95% probability, the detection sensitivity of RT-RAA was 3.425 log10 genomic copies (LGC)/reaction. Moreover, no cross-reaction was observed with other norovirus genogroups and other common foodborne viruses. Stool samples were examined by RT-RAA and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Compared of RT-qPCR, kappa values for human norovirus detection with RT-RAA were 0.894 (p < 0.001), indicating that both assays were in agreement. CONCLUSION: This RT-RAA assay provides a rapid, specific, and sensitive assay for human norovirus detection and is suitable for clinical testing.


Subject(s)
Caliciviridae Infections/diagnosis , Gastroenteritis/diagnosis , Norovirus/genetics , Nucleic Acid Amplification Techniques/methods , Base Sequence , Caliciviridae Infections/virology , DNA Primers/metabolism , Gastroenteritis/virology , Genotype , Humans , Norovirus/isolation & purification , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinases/metabolism , Sensitivity and Specificity , Sequence Alignment
14.
BMC Plant Biol ; 19(1): 371, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31438856

ABSTRACT

BACKGROUND: Propamocarb (PM) is one of the main pesticides used for controlling cucumber downy mildew. However, due to its volatility and internal absorption, PM can easily form pesticide residues on cucumber fruits that seriously endanger human health and pollute the environment. The breeding of new cucumber varieties with a low abundance of PM residues via genetic methods constitutes an effective strategy for reducing pesticide residues and improving cucumber safety and quality. To help elucidate the molecular mechanism resulting in a low PM residue abundance in cucumber, we used the cucumber cultivar 'D0351' (which has the lowest PM residue content) as the test material and identified genes related to low PM residue abundance through high-throughput tag-sequencing (Tag-Seq). RESULTS: CsMAPEG was constitutively expressed and showed both varietal and organizational differences. This gene was strongly expressed in 'D0351'. The expression levels of CsMAPEG in different cucumber tissues under PM stress were as follows: fruit>leaf>stem>root. CsMAPEG can respond to salicylic acid (SA), gibberellin (GA) and Corynespora cassiicola Wei (Cor) stress and thus plays an important regulatory role in plant responses to abiotic and biological stresses. The PM residue abundance in the fruits of CsMAPEG-overexpressing plants was lower than those found in antisense CsMAPEG plants and wild-type plants at all tested time points. The results revealed that CsMAPEG played a positive role in reducing the PM residue abundance. A CsMAPEG sense construct increased the contents of SOD, POD and GST in cucumber fruits, enhanced the degradation and metabolism of PM in cucumber, and thus effectively reduced the pesticide residue abundance in cucumber fruits. CONCLUSIONS: The expression patterns of CsMAPEG in cucumber cultivars with high and low pesticide residue abundances and a transgenic verification analysis showed that CsMAPEG can actively respond to PM stress and effectively reduce the PM residue abundance in cucumber fruits. The results of this study will help researchers further elucidate the mechanism responsible for a low PM residue abundance in cucumber and lay a foundation for the breeding of new agricultural cucumber varieties with low pesticide residue abundances.


Subject(s)
Carbamates/pharmacology , Cucumis sativus/genetics , Fungicides, Industrial/pharmacology , Genes, Plant , Pesticide Residues , Cloning, Molecular , Cucumis sativus/drug effects , Cucumis sativus/enzymology , Cucumis sativus/physiology , Gene Expression Profiling , Genetic Vectors , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Transformation, Genetic
15.
Sensors (Basel) ; 19(12)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200536

ABSTRACT

Because there are different types of BeiDou constellations with participating geostationary orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites, the maneuvering frequency of BeiDou satellites is higher than that of other navigation systems. The satellite orbital maneuvers lead to orbital parameter failure for several hours from broadcast ephemeris. Due to the missing initial orbit, the maneuvering thrust, and the period of orbital maneuvering, the orbit products of maneuvering satellites cannot be provided by the International Global Navigation Satellite System (GNSS) Service (IGS) and International GNSS Monitoring and Assessment System (iGMAS). In addition, the period of unhealthy status and the orbital parameters of maneuvering satellites in broadcast ephemeris are unreliable, making the detection of orbital maneuver periods more difficult. Here, we develop a method to detect orbital maneuver periods involving two key steps. The first step is orbit prediction of maneuvering satellites based on precise orbit products. The second step is time period detection of orbit maneuvering. The start time detection factor is calculated by backward prediction orbit and pseudo-range observations, and the end time detection factor is calculated by forward prediction orbit and pseudo-range observations. Data of stations from the Multi-GNSS Experiment (MGEX) and iGMAS were analyzed. The results show that the period of orbit maneuvering could be detected accurately for BeiDou GEO and IGSO satellites. In addition, the orbital maneuver period of other GNSS medium Earth orbit (MEO) satellites could also be determined by this method. The results of period detection for orbit maneuvering provide important reference information for precision orbit and clock offset determination during satellite maneuvers.

16.
BMC Plant Biol ; 18(1): 16, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29347906

ABSTRACT

BACKGROUND: Cucumber downy mildew is among the most important diseases that can disrupt cucumber production. Propamocarb, also known as propyl-[3-(dimethylamino)propyl]carbamate (PM), is a systemic carbamate fungicide pesticide that is widely applied in agricultural production because of its high efficiency of pathogens control, especially cucumber downy mildew. However, residual PM can remain in cucumbers after the disease has been controlled. To explore the molecular mechanisms of PM retention, cucumber cultivars 'D9320' (with the highest residual PM content) and 'D0351' (lowest residual PM content) were studied. High-throughput tag-sequencing (Tag-Seq) results showed that the CsDIR16 gene was related to PM residue, which was verified using transgenic technology. RESULTS: We investigated the activity of a dirigent cucumber protein encoded by the CsDIR16 in gene response to stress induced by PM treatment. Gene-expression levels of CsDIR16 were up-regulated in the fruits, leaves, and stems of 'D0351' plants in response to PM treatment. However, in cultivar 'D9320', CsDIR16 levels were down-regulated in the leaves and stems after PM treatment, with no statistically significant differences observed in the fruits. Induction by jasmonic acid, abscisic acid, polyethylene glycol 4000, NaCl, and Corynespora cassiicola Wei (Cor) resulted in CsDIR16 up-regulation in 'D0351' and 'D9320'. Expression after salicylic acid treatment was up-regulated in 'D0351', but was down-regulated in 'D9320'. CsDIR16 overexpression lowered PM residues, and these were more rapidly reduced in CsDIR16(+) transgenic 'D9320' plants than in wild-type 'D9320' and CsDIR16(-) transgenic plants. CONCLUSIONS: Analyses of the CsDIR16-expression patterns in the cucumber cultivars with the highest and lowest levels of PM residue, and transgenic validation indicated that CsDIR16 plays a positive role in reducing PM residues. The findings of this study help understand the regulatory mechanisms occurring in response to PM stress in cucumbers and in establishing the genetic basis for developing low-pesticide residue cucumber cultivars.


Subject(s)
Carbamates/metabolism , Cucumis sativus/genetics , Fungicides, Industrial/metabolism , Oomycetes/physiology , Plant Diseases/genetics , Plant Proteins/genetics , Amino Acid Sequence , Base Sequence , Cucumis sativus/metabolism , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Proteins/chemistry , Plant Proteins/metabolism
17.
Sensors (Basel) ; 18(3)2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29495638

ABSTRACT

The orbital maneuvers of Global Navigation Satellite System (GNSS) Constellations will decrease the performance and accuracy of positioning, navigation, and timing (PNT). Because satellites in the Chinese BeiDou Navigation Satellite System (BDS) are in Geostationary Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO), maneuvers occur more frequently. Also, the precise start moment of the BDS satellites' orbit maneuvering cannot be obtained by common users. This paper presented an improved real-time detecting method for BDS satellites' orbit maneuvering and anomalies with higher timeliness and higher accuracy. The main contributions to this improvement are as follows: (1) instead of the previous two-steps method, a new one-step method with higher accuracy is proposed to determine the start moment and the pseudo random noise code (PRN) of the satellite orbit maneuvering in that time; (2) BDS Medium Earth Orbit (MEO) orbital maneuvers are firstly detected according to the proposed selection strategy for the stations; and (3) the classified non-maneuvering anomalies are detected by a new median robust method using the weak anomaly detection factor and the strong anomaly detection factor. The data from the Multi-GNSS Experiment (MGEX) in 2017 was used for experimental analysis. The experimental results and analysis showed that the start moment of orbital maneuvers and the period of non-maneuver anomalies can be determined more accurately in real-time. When orbital maneuvers and anomalies occur, the proposed method improved the data utilization for 91 and 95 min in 2017.

18.
Plant J ; 86(6): 514-29, 2016 06.
Article in English | MEDLINE | ID: mdl-27121031

ABSTRACT

Although research has extensively illustrated the molecular basis of plant responses to salt and high-pH stresses, knowledge on carbonate alkaline stress is poor and the specific responsive mechanism remains elusive. We have previously characterized a Glycine soja Ca(2+) /CAM-dependent kinase GsCBRLK that could increase salt tolerance. Here, we characterize a methionine sulfoxide reductase (MSR) B protein GsMSRB5a as a GsCBRLK interactor by using Y2H and BiFc assays. Further analyses showed that the N-terminal variable domain of GsCBRLK contributed to the GsMSRB5a interaction. Y2H assays also revealed the interaction specificity of GsCBRLK with the wild soybean MSRB subfamily proteins, and determined that the BoxI/BoxII-containing regions within GsMSRBs were responsible for their interaction. Furthermore, we also illustrated that the N-terminal basic regions in GsMSRBs functioned as transit peptides, which targeted themselves into chloroplasts and thereby prevented their interaction with GsCBRLK. Nevertheless, deletion of these regions allowed them to localize on the plasma membrane (PM) and interact with GsCBRLK. In addition, we also showed that GsMSRB5a and GsCBRLK displayed overlapping tissue expression specificity and coincident expression patterns under carbonate alkaline stress. Phenotypic experiments demonstrated that GsMSRB5a and GsCBRLK overexpression in Arabidopsis enhanced carbonate alkaline stress tolerance. Further investigations elucidated that GsMSRB5a and GsCBRLK inhibited reactive oxygen species (ROS) accumulation by modifying the expression of ROS signaling, biosynthesis and scavenging genes. Summarily, our results demonstrated that GsCBRLK and GsMSRB5a interacted with each other, and activated ROS signaling under carbonate alkaline stress.


Subject(s)
Fabaceae/enzymology , Fabaceae/metabolism , Methionine Sulfoxide Reductases/metabolism , Plant Proteins/metabolism , Arabidopsis/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Fabaceae/genetics , Gene Expression Regulation, Plant , Methionine Sulfoxide Reductases/genetics , Plant Proteins/genetics , Protein Binding , Reactive Oxygen Species/metabolism
19.
Plant Mol Biol ; 95(4-5): 519-531, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29052099

ABSTRACT

KEY MESSAGE: Overexpression of CsERF025 induces fruit bending by promoting the production of ethylene. Cucumber fruit bending critically affects cucumber quality, but the mechanism that causes fruit bending remains unclear. To better understand this mechanism, we performed transcriptome analyses on tissues from the convex (C1) and concave (C2) sides of bending and straight (S) fruit at 2 days post anthesis (DPA). We identified a total of 281 differentially expressed genes (DEGs) from both the convex and concave sides of bent fruit that showed significantly different expression profiles relative to straight fruits. Of these 281 DEGs, 196 were up-regulated (C1/S_C2/S) and 85 were down-regulated (C1/S_C2/S). Among the 196 up-regulated DEGs, the transcriptional levels of genes related to ethylene biosynthesis and signaling pathways were significantly higher in bending fruit compared with straight fruit. CsERF025 showed the largest difference in expression between bending and straight fruit. CsERF025 is an AP2/ERF gene encoding a protein that localizes to the nucleus. Overexpression of this gene increased the bending rate of cucumber fruits and increased the angle of bending. CsERF025 increased both the expression of ethylene biosynthesis-related genes and the production of ethylene. The application of exogenous 1-aminocyclopropane-l-carboxylic acid (ACC) to straight fruits from control plants promoted fruit bending. Thus, CsERF025 enhances the production of ethylene and thereby promotes fruit bending in cucumber.


Subject(s)
Cucumis sativus/genetics , Ethylenes/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Transcriptome , Cucumis sativus/growth & development , Fruit/genetics , Fruit/growth & development , Gene Expression Profiling , Gene Expression Regulation, Developmental , Plant Proteins/genetics
20.
BMC Plant Biol ; 17(1): 96, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28583084

ABSTRACT

BACKGROUND: Cucumber downy mildew, caused by P. cubensis, is an important leaf disease that can severely affect cucumber production. In recent years, cucumber target spot, caused by C. cassiicola, has been reported in both Asia and Europe and is now considered as a major disease disrupting cucumber production. Single-disease-resistant cucumber varieties have been unable to satisfy production needs. To explore the molecular mechanisms of cucumber resistance to these two diseases, cucumber cultivars D9320 (resistant to downy mildew and target spot) and D0401 (susceptible to downy mildew and target spot) were used as experimental materials in this study. We used transcriptome sequencing technology to identify genes related to disease resistance and verified using transgenic technology. RESULTS: We screened out the cucumber resistance-related gene CsERF004 using transcriptome sequencing technology. Induction by pathogens, salicylic acid (SA), and ethylene (ET) resulted in the up-regulation of CsERF004. Three treatments, namely, inoculation with C. cassiicola alone, inoculation with P. cubensis alone, and simultaneous inoculation with both pathogens, all resulted in the significant and sustained up-regulation of CsERF004 in the resistant cultivar D9320, during the early stage of infection. In the susceptible cultivar D0401, CsERF004 expression was also significantly up-regulated at the later stage of infection but to a lesser extent and for a shorter duration than in the resistant cultivar D9320. The CsERF004 gene encodes a protein localizes to the nucleus. The over-expression of CsERF004 in the susceptible cultivar D0401 resulted in the significant up-regulation of the CsPR1 and CsPR4 genes and increased the levels of SA and ET, which enhanced the resistance of cucumber to downy mildew and target spot. CONCLUSIONS: Analyses of the CsERF004 expression pattern in disease-resistant and susceptible cucumber cultivars and transgenic validation indicate that CsERF004 confers resistance to P. cubensis and C. cassiicola. The findings of this study can help to better understanding of mechanisms of response to pathogens and in establishment the genetic basis for the development of cucumber broad-spectrum resistant cultivars.


Subject(s)
Ascomycota/physiology , Cucumis sativus/genetics , Disease Resistance/genetics , Oomycetes/physiology , Transcription Factors/genetics , Amino Acid Sequence , Cucumis sativus/metabolism , Cucumis sativus/microbiology , Ethylenes/metabolism , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Plant Proteins/genetics , Salicylic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL