Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.338
Filter
Add more filters

Publication year range
1.
Nature ; 600(7887): 54-58, 2021 12.
Article in English | MEDLINE | ID: mdl-34666338

ABSTRACT

The Moon has a magmatic and thermal history that is distinct from that of the terrestrial planets1. Radioisotope dating of lunar samples suggests that most lunar basaltic magmatism ceased by around 2.9-2.8 billion years ago (Ga)2,3, although younger basalts between 3 Ga and 1 Ga have been suggested by crater-counting chronology, which has large uncertainties owing to the lack of returned samples for calibration4,5. Here we report a precise lead-lead age of 2,030 ± 4 million years ago for basalt clasts returned by the Chang'e-5 mission, and a 238U/204Pb ratio (µ value)6 of about 680 for a source that evolved through two stages of differentiation. This is the youngest crystallization age reported so far for lunar basalts by radiometric dating, extending the duration of lunar volcanism by approximately 800-900 million years. The µ value of the Chang'e-5 basalt mantle source is within the range of low-titanium and high-titanium basalts from Apollo sites (µ value of about 300-1,000), but notably lower than those of potassium, rare-earth elements and phosphorus (KREEP) and high-aluminium basalts7 (µ value of about 2,600-3,700), indicating that the Chang'e-5 basalts were produced by melting of a KREEP-poor source. This age provides a pivotal calibration point for crater-counting chronology in the inner Solar System and provides insight on the volcanic and thermal history of the Moon.

2.
J Immunol ; 212(4): 645-662, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38180157

ABSTRACT

Collectin is a crucial component of the innate immune system and plays a vital role in the initial line of defense against pathogen infection. In mammals, collectin kidney 1 (CL-K1) is a soluble collectin that has recently been identified to have significant functions in host defense. However, the evolutionary origins of immune defense of CL-K1 and its mechanism in clearance of pathogenic microorganisms remain unclear, especially in early vertebrates. In this study, the Oreochromis niloticus CL-K1 (OnCL-K1) protein was purified and identified, which was capable of binding to two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, OnCL-K1 exhibited direct bactericidal activity by binding to lipoteichoic acid or LPS on cell walls, disrupting the permeability and integrity of the bacterial membrane in vitro. Upon bacterial challenge, OnCL-K1 significantly inhibited the proliferation of pathogenic bacteria, reduced the inflammatory response, and improved the survival of tilapia. Further research revealed that OnCL-K1 could associate with OnMASPs to initiate and regulate the lectin complement pathway. Additionally, OnCD93 reduced the complement-mediated hemolysis by competing with OnMASPs for binding to OnCL-K1. More importantly, OnCL-K1 could facilitate phagocytosis by collaborating with cell surface CD93 in a lectin pathway-independent manner. Moreover, OnCL-K1 also promoted the formation of phagolysosomes, which degraded and killed ingested bacteria. Therefore, this study reveals the antibacterial response mechanism of CL-K1 in primitive vertebrates, including promoting complement activation, enhancing opsonophagocytosis, and killing of macrophages, as well as its internal links, all of which provide (to our knowledge) new insights into the understanding of the evolutionary origins and regulatory roles of the collectins in innate immunity.


Subject(s)
Macrophages , Opsonization , Animals , Macrophages/metabolism , Complement Activation , Kidney/metabolism , Vertebrates , Collectins/metabolism , Fish Proteins/metabolism , Mammals/metabolism
3.
Biochem Biophys Res Commun ; 710: 149889, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38581955

ABSTRACT

The nanomedicine system based on dual drug delivery systems (DDDs) can significantly enhance the efficacy of tumor treatment. Herein, a metal-organic framework, Zeolite imidazole salt frames 8 (ZIF-8), was successfully utilized as a carrier to load the dual chemotherapeutic drugs doxorubicin (DOX) and camptothecin (CPT), named DOX/CPT@ZIF-8 (denoted as DCZ), and their inhibitory effects on 4T1 breast cancer cells were evaluated. The study experimentally demonstrated the synergistic effects of the dual chemotherapeutic drugs within the ZIF-8 carrier and showed that the ZIF-8 nano-carrier loaded with the dual drugs exhibited stronger cytotoxicity and inhibitory effects on 4T1 breast cancer cells compared to single-drug treatment. The use of a ZIF-8-based dual chemotherapeutic drug carrier system highlighted its potential advantages in suppressing 4T1 breast cancer cells.


Subject(s)
Breast Neoplasms , Metal-Organic Frameworks , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Drug Delivery Systems , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Carriers , Cell Line, Tumor
4.
Dev Neurosci ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471480

ABSTRACT

BACKGROUND: Upstream stimulating factor 2 (USF2) belongs to basic-Helix-Loop-Helix-Leucine Zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated. METHODS: Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2), and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 was detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5. RESULTS: The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased level of IL-10, but decreased TNF-α, IL-1ß, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206, while reduced expression of CD16 and CD32 in SNL-induced mice. USF2 bind to promoter of SNHG5, and weakened SNL-induced up-regulation of SNHG5. SNHG5 bind to miR-181b-5p, and miR-181b-5p to interact with CXCL5. CONCLUSION: Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.

5.
Plant Biotechnol J ; 22(5): 1164-1176, 2024 May.
Article in English | MEDLINE | ID: mdl-38070185

ABSTRACT

Soybean is a short-day plant that typically flowers earlier when exposed to short-day conditions. However, the identification of genes associated with earlier flowering time but without a yield penalty is rare. In this study, we conducted genome-wide association studies (GWAS) using two re-sequencing datasets that included 113 wild soybeans (G. soja) and 1192 cultivated soybeans (G. max), respectively, and simultaneously identified a candidate flowering gene, qFT13-3, which encodes a protein homologous to the pseudo-response regulator (PRR) transcription factor. We identified four major haplotypes of qFT13-3 in the natural population, with haplotype H4 (qFT13-3H4) being lost during domestication, while qFT13-3H1 underwent natural and artificial selection, increasing in proportion from 4.5% in G. soja to 43.8% in landrace and to 81.9% in improve cultivars. Notably, most cultivars harbouring qFT13-3H1 were located in high-latitude regions. Knockout of qFT13-3 accelerated flowering and maturity time under long-day conditions, indicating that qFT13-3 functions as a flowering inhibitor. Our results also showed that qFT13-3 directly downregulates the expression of GmELF3b-2 which is a component of the circadian clock evening complex. Field trials revealed that the qft13-3 mutants shorten the maturity period by 11 days without a concomitant penalty on yield. Collectively, qFT13-3 can be utilized for the breeding of high-yield cultivars with a short maturity time suitable for high latitudes.


Subject(s)
Genome-Wide Association Study , Glycine max , Glycine max/genetics , Plant Breeding , Haplotypes/genetics , Photoperiod , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics
6.
IUBMB Life ; 76(4): 182-199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37921568

ABSTRACT

High prevalence and metastasis rates are characteristics of lung cancer. Glycolysis provides energy for the development and metastasis of cancer cells. The 1,25-dihydroxy vitamin D3 (1,25(OH)2 D3 ) has been linked to reducing cancer risk and regulates various physiological functions. We hypothesized that 1,25(OH)2 D3 could be associated with the expression and activity of Na+ /H+ exchanger isoform 1 (NHE1) of Lewis lung cancer cells, thus regulating glycolysis as well as migration by actin reorganization. Followed by online public data analysis, Vitamin D3 receptor, the receptor of 1,25(OH)2 D3 has been proved to be abundant in lung cancers. We demonstrated that 1,25(OH)2 D3 treatment suppressed transcript levels, protein levels, and activity of NHE1 in LLC cells. Furthermore, 1,25(OH)2 D3 treatment resets the metabolic balance between glycolysis and OXPHOS, mainly including reducing glycolytic enzymes expression and lactate production. In vivo experiments showed the inhibition effects on tumor growth as well. Therefore, we concluded that 1,25(OH)2 D3 could amend the NHE1 function, which leads to metabolic reprogramming and cytoskeleton reconstruction, finally inhibits the cell migration.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cell Movement
7.
New Phytol ; 242(3): 1098-1112, 2024 May.
Article in English | MEDLINE | ID: mdl-38515249

ABSTRACT

The potential for totipotency exists in all plant cells; however, the underlying mechanisms remain largely unknown. Earlier findings have revealed that the overexpression of LEAFY COTYLEDON 2 (LEC2) can directly trigger the formation of somatic embryos on the cotyledons of Arabidopsis. Furthermore, cotyledon cells that overexpress LEC2 accumulate significant lipid reserves typically found in seeds. The precise mechanisms and functions governing lipid accumulation in this process remain unexplored. In this study, we demonstrate that WRINKLED1 (WRI1), the key regulator of lipid biosynthesis, is essential for somatic embryo formation, suggesting that WRI1-mediated lipid biosynthesis plays a crucial role in the transition from vegetative to embryonic development. Our findings indicate a direct interaction between WRI1 and LEC2, which enhances the enrichment of LEC2 at downstream target genes and stimulates their induction. Besides, our data suggest that WRI1 forms a complex with LEC1, LEC2, and FUSCA3 (FUS3) to facilitate the accumulation of auxin and lipid for the somatic embryo induction, through strengthening the activation of YUCCA4 (YUC4) and OLEOSIN3 (OLE3) genes. Our results uncover a regulatory module controlled by WRI1, crucial for somatic embryogenesis. These findings provide valuable insights into our understanding of plant cell totipotency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids , Lipids , Seeds/genetics , Transcription Factors/metabolism
8.
Plant Physiol ; 192(4): 2737-2755, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37086480

ABSTRACT

Magnesium chelatase (MgCh) catalyzes the insertion of magnesium into protoporphyrin IX, a vital step in chlorophyll (Chl) biogenesis. The enzyme consists of 3 subunits, MgCh I subunit (CHLI), MgCh D subunit (CHLD), and MgCh H subunit (CHLH). The CHLI subunit is an ATPase that mediates catalysis. Previous studies on CHLI have mainly focused on model plant species, and its functions in other species have not been well described, especially with regard to leaf coloration and metabolism. In this study, we identified and characterized a CHLI mutant in strawberry species Fragaria pentaphylla. The mutant, noted as p240, exhibits yellow-green leaves and a low Chl level. RNA-Seq identified a mutation in the 186th amino acid of the CHLI subunit, a base conserved in most photosynthetic organisms. Transient transformation of wild-type CHLI into p240 leaves complemented the mutant phenotype. Further mutants generated from RNA-interference (RNAi) and CRISPR/Cas9 gene editing recapitulated the mutant phenotype. Notably, heterozygous chli mutants accumulated more Chl under low light conditions compared with high light conditions. Metabolite analysis of null mutants under high light conditions revealed substantial changes in both nitrogen and carbon metabolism. Further analysis indicated that mutation in Glu186 of CHLI does not affect its subcellular localization nor the interaction between CHLI and CHLD. However, intramolecular interactions were impaired, leading to reduced ATPase and MgCh activity. These findings demonstrate that Glu186 plays a key role in enzyme function, affecting leaf coloration via the formation of the hexameric ring itself, and that manipulation of CHLI may be a means to improve strawberry plant fitness and photosynthetic efficiency under low light conditions.


Subject(s)
Fragaria , Lyases , Point Mutation , Fragaria/genetics , Fragaria/metabolism , Lyases/genetics , Lyases/metabolism , Mutation/genetics , Adenosine Triphosphatases/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Chlorophyll/metabolism
9.
Acc Chem Res ; 56(16): 2225-2240, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37535829

ABSTRACT

ConspectusCO2 conversion to valuable chemicals is effective at reducing CO2 emissions. We previously proposed valorization strategies and developed efficient catalysts to address thermodynamic stability and kinetic inertness issues related to CO2 conversion. Earlier, we developed molecular capture reagents and catalysts to integrate CO2 capture and conversion, i.e., in situ transformation. Based on the mechanistic understanding of CO2 capture, activation, and transformation at a molecular level, we set out to develop heterogeneous catalysts by incorporating catalytic units into nanomaterials via the immobilization of active molecular catalysts onto nanomaterials and designing nanomaterials with intrinsic catalytic sites.In thermocatalytic CO2 conversion, carbonaceous and metal-organic framework (MOF)-based catalysts were developed for nonreductive and reductive CO2 conversion. Novel Cu- and Zn-based MOFs and carbon-supported Cu catalysts were prepared and successfully applied to the cycloaddition, carboxylation, and carboxylative cyclization reactions with CO2, generating cyclic carbonates, carboxyl acids, and oxazolidinones as respective target products. Reductive conversion of CO2, especially reductive functionalization with CO2, is a promising transformation strategy to produce valuable chemicals, alleviating chemical production that relies on petrochemistry. We explored the hierarchical reductive functionalization of CO2 using organocatalysts and proposed strategies to regulate the CO2 reduction level, triggering heterogeneous catalyst investigation. Introducing multiple active sites into nanomaterials opens possibilities to develop novel CO2 transformation strategies. CO2 capture and in situ conversion were realized with an N-doped carbon-supported Zn complex and MOF materials as CO2 adsorbents and catalysts. These nanomaterial-based catalysts feature high stability and excellent efficiency and act as shape-selective catalysts in some cases due to their unique pore structure.Nanomaterial-based catalysts are also appealing candidates for photocatalytic CO2 reduction (PCO2RR) and electrocatalytic CO2 reduction (ECO2RR), so we developed a series of hybrid photo-/electrocatalysts by incorporating active metal complexes into different matrixes such as porous organic polymers (POPs), metal-organic layers (MOLs), micelles, and conducting polymers. By introducing Re-bipyridine and Fe-porphyrin complexes into POPs and regulating the structure of the polymer chain, catalyst stability and efficiency increased in PCO2RR. PCO2RR in aqueous solution was realized by designing the Re-bipyridine-containing amphiphilic polymer to form micelles in aqueous solution and act as nanoreactors. We prepared MOLs with two different metallic centers, i.e., the Ni-bipyridine site and Ni-O node, to improve the efficiency for PCO2RR due to the synergistic effect of these metal centers. Sulfylphenoxy-decorated cobalt phthalocyanine (CoPc) cross-linked polypyrrole was prepared and used as a cathode, achieving the electrocatalytic transformation of diluted CO2 benefiting from the CO2 adsorption capability of polypyrrole. We fabricated immobilized 4-(t-butyl)-phenoxy cobalt phthalocyanine and Bi-MOF as cathodes to promote the paired electrolysis of CO2 and 5-hydroxymethylfurfural (HMF) and obtained CO2 reductive products and 2,5-furandicarboxylic acid (FDCA) efficiently.

10.
Cancer Cell Int ; 24(1): 119, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38553712

ABSTRACT

OBJECTIVE: This study aimed to construct a model based on 23 enrolled molecules to evaluate prognoses of pT2/3N0M0 esophageal squamous cell carcinoma (ESCC) patients with up to 20 years of follow-up. METHODS: The lasso-Cox model was used to identify the candidate molecule. A nomogram was conducted to develop the survival model (molecular score, MS) based on the molecular features. Cox regression and Kaplan-Meier analysis were used in this study. The concordance index (C-index) was measured to compare the predicted ability between different models. The primary endpoint was overall survival (OS). RESULTS: A total of 226 patients and 23 proteins were enrolled in this study. Patients were classified into high-risk (MS-H) and low-risk (MS-L) groups based on the MS score of 227. The survival curves showed that the MS-L cohort had better 5-year and 10-year survival rates than the MS-H group (5-year OS: 51.0% vs. 8.0%; 10-year OS: 45.0% vs. 5.0%, all p < 0.001). Furthermore, multivariable analysis confirmed MS as an independent prognostic factor after eliminating the confounding factors (Hazard ratio 3.220, p < 0.001). The pT classification was confirmed to differentiate ESCC patients' prognosis (Log-rank: p = 0.029). However, the combination of pT and MS could classify survival curves evidently (overall p < 0.001), which showed that the prognostic prediction efficiency was improved significantly by the combination of the pT and MS than by the classical pT classification (C-index: 0.656 vs. 0.539, p < 0.001). CONCLUSIONS: Our study suggested an MS for significant clinical stratification of T2/3N0M0 ESCC patients to screen out subgroups with poor prognoses. Besides, the combination of pT staging and MS could predict survival more accurately for this cohort than the pT staging system alone.

11.
Article in English | MEDLINE | ID: mdl-38652005

ABSTRACT

Two Gram-negative, aerobic, rod-shaped bacterial strains, 7MK25T and 6Y81T, were isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain 7MK25T showed the highest similarity (93.6 %) to Methyloferula stellata AR4T, followed by Bosea thiooxidans DSM 9653T (93.3 %). Strain 6Y81T had the highest similarity of 97.9 % to Lichenibacterium minor RmlP026T, followed by Lichenibacterium ramalinae RmlP001T (97.2 %). Phylogenomic analysis using the UBCG and PhyloPhlAn methods consistently showed that strain 7MK25T formed a sister clade to Boseaceae, while strain 6Y81T formed an independent clade within the genus Lichenibacterium, both in the order Hyphomicrobiales. The digital DNA-DNA hybridization and average nucleotide identity values between strains 7MK25T, 6Y81T and their close relatives were in the ranges of 19.1-29.9 % and 72.5-85.5 %, respectively. The major fatty acids of 7MK25T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C19 : 0 cyclo ω8c, C16 : 0 and C17 : 0 cyclo, while those of 6Y81T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C16 : 0 and C16 : 0 3-OH. Strains 7MK25T and 6Y81T took diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as their dominant polar lipids, and Q-10 as their major respiratory quinone. On the basis of phenotypic and phylogenetic data, strain 7MK25T is proposed to represent a novel species of a novel genus with name Terrirubrum flagellatum gen. nov., sp. nov., within a novel family Terrirubraceae fam. nov., with 7MK25T (=KCTC 62738T=GDMCC 1.1452T) as its type strain. Strain 6Y81T represents a novel species in the genus Lichenibacterium, for which the name Lichenibacterium dinghuense sp. nov. (type strain 6Y81T=KACC 21 727T=GDMCC 1.2176T) is proposed. Rhodoblastaceae fam. nov. with Rhodoblastus as the type genus is also proposed to solve the non-monophylectic problem of the family Roseiarcaceae.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Forests , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , China , DNA, Bacterial/genetics , Ubiquinone
12.
BMC Gastroenterol ; 24(1): 111, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491346

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as a new term for diagnosing fatty liver disease, which is considered to be a multi-systemic disease with multiple extrahepatic manifestations, including sarcopenia. The link between sarcopenia and MAFLD remains uncertain, especially among young and middle-aged adults. Thus, we examined the relationship between MAFLD and sarcopenia in young and middle-aged individuals in this study. METHODS: A total of 2214 individuals with laboratory tests, dual-energy X-ray absorptiometry and ultrasound transient elastography from NHANES 2017-2018 were selected for this study. MAFLD was diagnosed as fatty liver disease with any one of the situations: overweight/obesity, diabetes mellitus, presence of metabolic dysregulation. Sarcopenia was defined by appendicular lean mass adjusted for body mass index (BMI). Multivariable logistic regression and restricted cubic spline (RCS) model were applied to explore the relationship between MAFLD and sarcopenia, and the mediation analyses were also conducted. Moreover, subgroup analyses stratified by BMI and lifestyles were done. RESULTS: The prevalence of MAFLD was 47.85%, and nearly 8.05% of participants had sarcopenia. The prevalence of sarcopenia was higher in participants with MAFLD (12.75%; 95% CI 10.18-15.31%) than in the non-MAFLD (3.73%; 95% CI 2.16-5.31%). MAFLD was significantly positively associated with sarcopenia after adjustments [OR = 2.87 (95% CI: 1.62-5.09)]. Moreover, significant positive associations were observed between liver fibrosis and sarcopenia prevalence in MAFLD patients (OR = 2.16; 95% CI 1.13-4.15). The RCS curve revealed that MAFLD was linearly associated with sarcopenia. The relationship between the MAFLD and sarcopenia were mediated by C-reactive protein (mediation proportion: 15.9%) and high-density lipoprotein cholesterol (mediation proportion: 18.9%). Subgroup analyses confirmed the association between MAFLD and sarcopenia differed in different lifestyle groups. CONCLUSIONS: Both MAFLD prevalence and severity was significantly associated with sarcopenia. Thus, clinicians should advise comorbidity screening and lifestyle changes to young and middle-aged patients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sarcopenia , Adult , Middle Aged , Humans , Nutrition Surveys , Sarcopenia/complications , Sarcopenia/epidemiology , Body Mass Index , C-Reactive Protein , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology
13.
Support Care Cancer ; 32(2): 115, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240829

ABSTRACT

BACKGROUND AND AIM: Previous studies reported inconsistent results on the prevalence and prognostic implications of frailty among older adults with gastric cancer. This systematic review synthesized available literature pertaining on this topic to establish the prevalence and unfavorable outcomes of frailty in older adults with gastric cancer. METHODS: A comprehensive search was conducted across multiple English databases including PubMed, Cochrane Library, CINAHL, Embase, and Web of Science as well as Chinese databases, namely, CNKI, Wan Fang, and CBM, from inception to July 4, 2023, to identify potential studies. Data related to the incidence of frailty and its unfavorable outcomes in older adults with gastric cancer were extracted. RevMan5.3 and R 4.2.2 were used to evaluate pooled prevalence, hazard ratios (HR), and 95% confidence interval (CI). RESULTS: This review comprehensively selected 13 studies, comprising 9 cohort studies and 4 cross-sectional studies, on 44,117 older adults diagnosed with gastric cancer. The incidence of frailty among older adults with gastric cancer ranged from 10 to 71%. The pooled prevalence of frailty was 29% (95% CI 0.21-0.39). Frailty was found to be associated with an elevated risk of postoperative complications (HR = 1.99, 95% CI 1.45-2.73), prolonged postoperative hospital stay (HR = 2.68, 95% CI 2.38-3.02), likelihood of readmission (HR = 3.28, 95% CI 1.77-6.08), and an increased mortality risk (HR = 1.60, 95% CI 1.36-1.90). CONCLUSIONS: Frailty was associated with a poor prognosis in older adults with gastric cancer. Clinical medical staff should focus on the frailty of older adults with gastric cancer, conduct large-scale, multicenter, and prospective studies and early screening of patients, and provide guidance for the implementation of prevention and treatment strategies.


Subject(s)
Frailty , Stomach Neoplasms , Humans , Aged , Frailty/epidemiology , Frailty/complications , Frail Elderly , Stomach Neoplasms/epidemiology , Stomach Neoplasms/complications , Prospective Studies , Prevalence , Cross-Sectional Studies , Risk Factors , Multicenter Studies as Topic
14.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623669

ABSTRACT

BACKGROUND: We aimed to evaluate the diagnostic capabilities of Chinese laboratories for inherited metabolic disorders (IMDs) using gas chromatography-mass spectrometry (GC-MS) on urine samples. Meanwhile, based on the result of the pilot external quality assessment (EQA) scheme, we hope to establish a standardized and reliable procedure for future EQA practice. METHODS: We recruited laboratories that participated in the EQA of quantitative analysis of urinary organic acids with GC-MS before joining the surveys. In each survey, a set of five real urine samples was distributed to each participant. The participants should analyze the sample by GC-MS and report the "analytical result", "the most likely diagnosis", and "recommendation for further tests" to the NCCL before the deadline. RESULTS: A total of 21 laboratories participated in the scheme. The pass rates were 94.4% in 2020 and 89.5% in 2021. For all eight IMDs tested, the analytical proficiency rates ranged from 84.7% - 100%, and the interpretational performance rate ranged from 88.2% - 97.0%. The performance on hyperphenylalaninemia (HPA), 3-methylcrotonyl-CoA carboxylase deficiency (MCCD), and ethylmalonic encephalopathy (EE) samples were not satisfactory. CONCLUSIONS: In general, the participants of this pilot EQA scheme are equipped with the basic capability for qualitative organic acid analysis and interpretation of the results. Limited by the small size of laboratories and samples involved, this activity could not fully reflect the state of clinical practice of Chinese laboratories. NCCL will improve the EQA scheme and implement more EQA activities in the future.


Subject(s)
Metabolic Diseases , Phenylketonurias , Humans , Quality Control , Laboratories , Metabolic Diseases/diagnosis , China , Quality Assurance, Health Care
15.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747911

ABSTRACT

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Neonatal Screening , Humans , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Pilot Projects , Genetic Testing/standards , Genetic Testing/methods , Neonatal Screening/standards , Neonatal Screening/methods , China , Dried Blood Spot Testing/standards , Dried Blood Spot Testing/methods , Quality Assurance, Health Care , Laboratories, Clinical/standards , Survival of Motor Neuron 1 Protein/genetics
16.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725149

ABSTRACT

The Toba volcanic system in Indonesia has produced two of the largest eruptions (>2,000 km3 dense-rock equivalent [DRE] each) on Earth since the Quaternary. U-Pb crystallization ages of zircon span a period of ∼600 ky before each eruptive event, and in the run-up to each eruption, the mean and variance of the zircons' U content decrease. To quantify the process of accumulation of eruptible magma underneath the Toba caldera, we integrated these observations with thermal and geochemical modeling. We show that caldera-forming eruptions at Toba are the result of progressive thermal maturation of the upper crustal magma reservoir, which grows and chemically homogenizes, by sustained magma influx at average volumetric rates between 0.008 and 0.01 km3/y over the past 2.2 My. Protracted thermal pulses related to magma-recharge events prime the system for eruption without necessarily requiring an increased magma-recharge rate before the two supereruptions. If the rate of magma input was maintained since the last supereruption of Toba at 75 ka, eruptible magma is currently accumulating at a minimum rate of ∼4.2 km3 per millennium, and the current estimate of the total volume of potentially eruptible magma available today is a minimum of ∼315 km3 Our approach to evaluate magma flux and the rate of eruptible magma accumulation is applicable to other volcanic systems capable of producing supereruptions and thereby could help in assessing the potential of active volcanic systems to feed supereruptions.

17.
Article in English | MEDLINE | ID: mdl-38581320

ABSTRACT

Objective: Language developmental delay is a common developmental disorder in children. This study stands out by conducting a comparative analysis between conventional intervention and early comprehensive intervention in children under and over 3 years of age. Unlike previous studies, our research delves into the distinctive impacts of these interventions on various developmental aspects, such as adaptive behavior, gross and fine motor skills, language, and personal social behavior. Methods: The research subjects were children diagnosed with language developmental delay who received intervention treatment at Quanzhou Children's Hospital between January 2021 and December 2022. After excluding children who did not meet the complete inclusion criteria, a total of 80 cases were included in the study. First, the clinical characteristics of all children were analyzed by separating the children by age and quantifying developmental quotients. Subsequently, the children were divided into either a control group or a research group. Children in both groups received conventional intervention, and those in the research group were also given early comprehensive intervention. Each group consisted of 40 children, and the intervention effects of the 2 groups were compared and discussed. Results: Children over 3 years of age had significantly lower developmental quotient values in various developmental areas (adaptive behavior, gross motor skills, fine motor skills, language, and personal social behavior) than those under 3 years of age (all P < .001). After the intervention, the assessment results of the research group using the Sign-Significant Language Developmental Delay Assessment Method were significantly better than those of the control group (all P < .001). After the intervention, the research group showed significant increases in speech and language expression, auditory perception and comprehension, visual-related understanding and expression, and total score, as assessed using the Early Language Development Progress Scale, compared with the control group (P = .034 for poor communication attitude, P = .028 for abnormal motor issues, and P = .042 for abnormal language comprehension abilities). After the intervention, all indicators of social behavior abilities in the research group were significantly higher than those in the control group (P = .019 for independent living skills, P = .024 for motor skills, P = .047 for homework performance, P = .017 for social interactions, P = .035 for group activity capabilities, and P = .022 for self-management ability scores), as assessed by the Infant to Middle School Social Life Skills Scale. Conclusion: Language developmental delay is a common childhood developmental disorder with a higher prevalence among males. Most cases are observed in children under 3 years of age, and as they age, they are more likely to develop global developmental delays. Early comprehensive intervention can significantly improve children's developmental status and enhance their social behavior abilities. Understanding the clinical characteristics of language developmental delay and early diagnosis, as well as implementing comprehensive intervention measures, are crucial for helping children overcome language difficulties. Through collaborative efforts, we can assist these children in realizing their full potential and achieving better language and social development.

18.
Phytother Res ; 38(4): 2023-2040, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38384110

ABSTRACT

Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases and poses a serious threat to human health. Currently, safe and effective preventive measures are unavailable. In this study, the protective effects of asiaticoside (AS) on dextran sodium sulfate (DSS)-induced colitis in mice and the underlying molecular mechanism were investigated. In this experiment, colitis was induced in mice with DSS. Subsequently, the role of AS in colitis and its underlying mechanisms were examined using H&E staining, immunofluorescence staining, western blot, Elisa, FMT, and other assays. The results showed that AS significantly attenuated the related symptoms of DSS-induced colitis in mice. In addition, AS inhibited the activation of signaling pathways TLR4/NF-κB and MAPK reduced the release of inflammatory factors, thereby attenuating the inflammatory response in mice. AS administration also restored the permeability of the intestinal barrier by increasing the levels of tight junction-associated proteins (claudin-3, occludin, and ZO-1). In addition, AS rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora. AS can alleviate DSS-induced ulcerative colitis in mice by maintaining the intestinal barrier, thus inhibiting the signaling pathways TLR4/NF-κB and MAPK activation, reducing the release of inflammatory factors, and regulating intestinal microecology.


Subject(s)
Colitis, Ulcerative , Colitis , Triterpenes , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NF-kappa B , Toll-Like Receptor 4 , Colitis/chemically induced , Colitis/drug therapy , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Colon
19.
Plant Dis ; 108(1): 45-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37555725

ABSTRACT

Xanthomonas fragariae is classified as a quarantine pathogen by the European and Mediterranean Plant Protection Organization. It commonly induces typical angular leaf spot (ALS) symptoms in strawberry leaves. X. fragariae strains from China (YL19, SHAQP01, and YLX21) exhibit ALS symptoms in leaves and more severe symptoms of dry cavity rot in strawberry crowns. Conversely, strains from other countries do not cause severe dry cavity rot symptoms in strawberries. After employing multilocus sequence analysis (MLSA), average nucleotide identity (ANI), and amino acid identity (AAI), we determined that Chinese strains of X. fragariae are genetically distinct from other strains and can be considered a new subspecies. Subsequent analysis of 63 X. fragariae genomes published at NCBI using IPGA and EDGAR3.0 revealed the pan-genomic profile, with 1,680 shared genes present in all 63 strains, including 71 virulence-related genes. Additionally, we identified 123 genes exclusive to all the Chinese strains, encompassing 12 virulence-related genes. The qRT-PCR analysis demonstrated that the expression of XopD, XopG1, CE8, GT2, and GH121 out of 12 virulence-related genes of Chinese strains (YL19) exhibited a constant increase in the early stages (6, 24, 54, and 96 hours postinoculation [hpi]) of strawberry leaf infected by YL19. So, the presence of XopD, XopG1, CE8, GT2, and GH121 in Chinese strains may play important roles in the early infection process of Chinese strains. These findings offer novel insights into comprehending the population structure and variation in the pathogenic capacity of X. fragariae.


Subject(s)
Genomics , Xanthomonas , Multilocus Sequence Typing , Xanthomonas/genetics
20.
Chem Soc Rev ; 52(19): 6838-6881, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37705437

ABSTRACT

Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.

SELECTION OF CITATIONS
SEARCH DETAIL