Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Biol Chem ; 298(10): 102490, 2022 10.
Article in English | MEDLINE | ID: mdl-36115458

ABSTRACT

Branching morphogenesis is a key process essential for lung and other organ development in which cellular and tissue architecture branch out to maximize surface area. While this process is known to be regulated by differential gene expression of ligands and receptors, how chromatin remodeling regulates this process remains unclear. Znhit1 (zinc finger HIT-type containing 1), acting as a chromatin remodeler, has previously been shown to control the deposition of the histone variant H2A.Z. Here, we demonstrate that Znhit1 also plays an important role in regulating lung branching. Using Znhit1 conditional KO mice, we show that Znhit1 deficiency in the embryonic lung epithelium leads to failure of branching morphogenesis and neonatal lethality, which is accompanied by reduced cell proliferation and increased cell apoptosis of the epithelium. The results from the transcriptome and the chromatin immunoprecipitation assay reveal that this is partially regulated by the derepression of Bmp4, encoding bone morphogenetic protein (BMP) 4, which is a direct target of H2A.Z. Furthermore, we show that inhibition of BMP signaling by the protein inhibitor Noggin rescues the lung branching defects of Znhit1 mutants ex vivo. Taken together, our study identifies the critical role of Znhit1/H2A.Z in embryonic lung morphogenesis via the regulation of BMP signaling.


Subject(s)
Carrier Proteins , Chromatin , Lung , Animals , Mice , Bone Morphogenetic Protein 4/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromatin/metabolism , Gene Expression Regulation, Developmental , Histones/metabolism , Lung/metabolism , Morphogenesis/genetics , Signal Transduction/genetics
2.
J Am Chem Soc ; 143(41): 17144-17152, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34634905

ABSTRACT

Imidacloprid, the world's leading insecticide, has been approved recently for controlling infectious disease vectors; yet, in agricultural settings, it has been implicated in the frightening decline of pollinators. This argues for strategies that sharply reduce the environmental impact of imidacloprid. When used as a contact insecticide, the effectiveness of imidacloprid relies on physical contact between its crystal surfaces and insect tarsi. Herein, seven new imidacloprid crystal polymorphs are reported, adding to two known forms. Anticipating that insect uptake of imidacloprid molecules would depend on the respective free energies of crystal polymorph surfaces, measurements of insect knockdown times for the metastable crystal forms were as much as nine times faster acting than the commercial form against Aedes, Anopheles, and Culex mosquitoes as well as Drosophila (fruit flies). These results suggest that replacement of commercially available imidacloprid crystals (a.k.a. Form I) in space-spraying with any one of three new polymorphs, Forms IV, VI, IX, would suppress vector-borne disease transmission while reducing environmental exposure and harm to nontarget organisms.


Subject(s)
Neonicotinoids , Nitro Compounds
3.
J Am Chem Soc ; 141(42): 16858-16864, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31601104

ABSTRACT

Malaria control is under threat by the development of vector resistance to pyrethroids in long-lasting insecticidal nets, which has prompted calls for a return to the notorious crystalline contact insecticide DDT. A faster acting difluoro congener, DFDT, was developed in Germany during World War II, but in 1945 Allied inspectors dismissed its superior performance and reduced toxicity to mammals. It vanished from public health considerations. Herein, we report the discovery of amorphous and crystalline forms of DFDT and a mono-fluorinated chiral congener, MFDT. These solid forms were evaluated against Drosophila as well as Anopheles and Aedes mosquitoes, the former identified as disease vectors for malaria and the latter for Zika, yellow fever, dengue, and chikungunya. Contact insecticides are transmitted to the insect when its feet contact the solid surface of the insecticide, resulting in absorption of the active agent. Crystalline DFDT and MFDT were much faster killers than DDT, and their amorphous forms were even faster. The speed of action (a.k.a. knockdown time), which is critical to mitigating vector resistance, depends inversely on the thermodynamic stability of the solid form. Furthermore, one enantiomer of the chiral MFDT exhibits faster knockdown speeds than the other, demonstrating chiral discrimination during the uptake of the insecticide or when binding at the sodium channel, the presumed destination of the neurotoxin. These observations demonstrate an unambiguous link between thermodynamic stability and knockdown time for important disease vectors, suggesting that manipulation of the solid-state chemistry of contact insecticides, demonstrated here for DFDT and MFDT, is a viable strategy for mitigating insect-borne diseases, with an accompanying benefit of reducing environmental impact.


Subject(s)
Communicable Disease Control/methods , DDT/chemistry , DDT/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Models, Molecular , Molecular Conformation
5.
Int J Biol Macromol ; 277(Pt 3): 134369, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098678

ABSTRACT

Hepatocellular carcinoma (HCC), ranking as the fourth most prevalent cancer globally, has garnered significant attention due to its high invasiveness and mortality rates. However, drug therapies face challenges of inadequate efficacy and unclear mechanisms. Here, we propose a novel biohybrid hydrogel that targets ß-klotho (KLB) for HCC treatment. As a dual-network hydrogel, this gel combines gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA) to ensure biocompatibility while enhancing controlled drug release. Notably, it exhibits good storage stability, high drug load capacity, and efficient water absorption. By introducing the HDAC3 inhibitor RGFP966, we can selectively inhibit the activation of KLB. This deactivation effectively blocks the FGF21-KLB signaling pathway and inhibits the progression of HCC. Importantly, we have successfully validated this unique phenomenon both in vivo and in vitro, providing substantial evidence for the efficacy of this hydrogel-based anti-tumor drug delivery system as a promising strategy for HCC treatment. This innovative research outcome brings new hope to the field of tumor therapy, providing a reliable theoretical foundation for future clinical applications.


Subject(s)
Carcinoma, Hepatocellular , Histone Deacetylases , Hydrogels , Klotho Proteins , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Humans , Histone Deacetylases/metabolism , Hydrogels/chemistry , Animals , Mice , Cell Line, Tumor , Polyvinyl Alcohol/chemistry , Signal Transduction/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/therapeutic use
6.
ACS Appl Mater Interfaces ; 16(38): 51769-51775, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39267341

ABSTRACT

The activity of crystalline contact insecticides relies on the extraction of surface molecules by insect tarsi upon contact. Most crystals are inherently anisotropic, and surface molecules on symmetry independent faces are expected to have different free energies. The facet-dependent bioavailability and associated efficacy of insect lethality have not been investigated, however. We discriminate the bioactivity of various facets of single crystals of DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane), a well-known contact insecticide. Our findings reveal facet-dependent lethality differences of nearly 75% among four crystallographically unique facets. Furthermore, computations reveal that the respective lethalities of the facets are strongly correlated with the detachment energies of molecules from the crystal surfaces. This facet-dependent lethality suggests a pathway to enhance the efficacy of known contact insecticides through crystal habit control.


Subject(s)
DDT , Insecticides , Insecticides/chemistry , Insecticides/pharmacology , Animals , DDT/chemistry , DDT/pharmacology , Crystallization
7.
MedComm (2020) ; 5(10): e741, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39309692

ABSTRACT

Plant-derived extracellular vesicles (EVs) are promising therapeutic agents owing to their natural abundance, accessibility, and unique biological properties. This review provides a comprehensive exploration of the therapeutic potential of plant-derived EVs and emphasizes their anti-inflammatory, antimicrobial, and tumor-inhibitory effects. Here, we discussed the advancements in isolation and purification techniques, such as ultracentrifugation and size-exclusion chromatography, which are critical for maintaining the functional integrity of these nanovesicles. Next, we investigated the diverse administration routes of EVs and carefully weighed their respective advantages and challenges related to bioavailability and patient compliance. Moreover, we elucidated the multifaceted mechanisms of action of plant-derived EVs, including their roles in anti-inflammation, antioxidation, antitumor activity, and modulation of gut microbiota. We also discussed the impact of EVs on specific diseases such as cancer and inflammatory bowel disease, highlighting the importance of addressing current challenges related to production scalability, regulatory compliance, and immunogenicity. Finally, we proposed future research directions for optimizing EV extraction and developing targeted delivery systems. Through these efforts, we envision the seamless integration of plant-derived EVs into mainstream medicine, offering safe and potent therapeutic alternatives across various medical disciplines.

8.
Nat Metab ; 6(8): 1601-1615, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39030389

ABSTRACT

Dysbiosis of the gut microbiota has been implicated in the pathogenesis of metabolic syndrome (MetS) and may impair host metabolism through harmful metabolites. Here, we show that Desulfovibrio, an intestinal symbiont enriched in patients with MetS, suppresses the production of the gut hormone glucagon-like peptide 1 (GLP-1) through the production of hydrogen sulfide (H2S) in male mice. Desulfovibrio-derived H2S is found to inhibit mitochondrial respiration and induce the unfolded protein response in intestinal L cells, thereby hindering GLP-1 secretion and gene expression. Remarkably, blocking Desulfovibrio and H2S with an over-the-counter drug, bismuth subsalicylate, improves GLP-1 production and ameliorates diet-induced metabolic disorder in male mice. Together, our study uncovers that Desulfovibrio-derived H2S compromises GLP-1 production, shedding light on the gut-relayed mechanisms by which harmful microbiota-derived metabolites impair host metabolism in MetS and suggesting new possibilities for treating MetS.


Subject(s)
Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Hydrogen Sulfide , Animals , Hydrogen Sulfide/metabolism , Male , Mice , Glucagon-Like Peptide 1/metabolism , Desulfovibrio/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Mice, Inbred C57BL
9.
Front Neurol ; 14: 1135305, 2023.
Article in English | MEDLINE | ID: mdl-37251238

ABSTRACT

Introduction: Childhood absence epilepsy (CAE) is a well-known pediatric epilepsy syndrome. Recent evidence has shown the presence of a disrupted structural brain network in CAE. However, little is known about the rich-club topology. This study aimed to explore the rich-club alterations in CAE and their association with clinical characteristics. Methods: Diffusion tensor imaging (DTI) datasets were acquired in a sample of 30 CAE patients and 31 healthy controls. A structural network was derived from DTI data for each participant using probabilistic tractography. Then, the rich-club organization was examined, and the network connections were divided into rich-club connections, feeder connections, and local connections. Results: Our results confirmed a less dense whole-brain structural network in CAE with lower network strength and global efficiency. In addition, the optimal organization of small-worldness was also damaged. A small number of highly connected and central brain regions were identified to form the rich-club organization in both patients and controls. However, patients exhibited a significantly reduced rich-club connectivity, while the other class of feeder and local connections was relatively spared. Moreover, the lower levels of rich-club connectivity strength were statistically correlated with disease duration. Discussion: Our reports suggest that CAE is characterized by abnormal connectivity concentrated to rich-club organizations and might contribute to understanding the pathophysiological mechanism of CAE.

10.
Front Neurosci ; 17: 1312676, 2023.
Article in English | MEDLINE | ID: mdl-38144207

ABSTRACT

Objective: This study aimed to evaluate the glymphatic system in childhood absence epilepsy (CAE) using diffusion tensor image analysis along the paravascular space (DTI-ALPS) index. Methods: Forty-two CAE patients and 50 age- and gender-matched healthy controls (HC) were included in this study. All participants underwent scanning using a Siemens 3.0 T magnetic resonance scanner, and the DTI-ALPS index was calculated. The study compared the differences of DTI-ALPS index between CAE patients and the healthy controls. Additionally, this study also assessed the relationship between the DTI-ALPS index and clinical characteristics such as age, seizure frequency, and duration of epilepsy. Results: The DTI-ALPS index was lower in CAE patients compared to the healthy controls (1.45 ± 0.36 vs. 1.66 ± 0.30, p < 0.01). The DTI-ALPS index showed a negative correlation with the duration of epilepsy (r = -0.48, p < 0.01) and a positive correlation with age (r = 0.766, p < 0.01) in CAE patients. However, no significant correlation was observed between the DTI-ALPS index and seizure frequency. Conclusion: The results of this study indicate that children with CAE exhibit dysfunction in the glymphatic system of the brain, which might contribute to understanding the pathophysiological mechanism of CAE. The DTI-ALPS, as a non-invasive diagnostic marker, can be used to assess the function of the glymphatic system in CAE patients, providing promising applications in the diagnosis and research of CAE.

SELECTION OF CITATIONS
SEARCH DETAIL