Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(7): e2322375121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315835

ABSTRACT

Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Protein Serine-Threonine Kinases , Acylation , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Gene Expression Regulation, Plant , Signal Transduction , Transferases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
2.
Nature ; 586(7829): 378-384, 2020 10.
Article in English | MEDLINE | ID: mdl-33057220

ABSTRACT

Neuromorphic computing draws inspiration from the brain to provide computing technology and architecture with the potential to drive the next wave of computer engineering1-13. Such brain-inspired computing also provides a promising platform for the development of artificial general intelligence14,15. However, unlike conventional computing systems, which have a well established computer hierarchy built around the concept of Turing completeness and the von Neumann architecture16-18, there is currently no generalized system hierarchy or understanding of completeness for brain-inspired computing. This affects the compatibility between software and hardware, impairing the programming flexibility and development productivity of brain-inspired computing. Here we propose 'neuromorphic completeness', which relaxes the requirement for hardware completeness, and a corresponding system hierarchy, which consists of a Turing-complete software-abstraction model and a versatile abstract neuromorphic architecture. Using this hierarchy, various programs can be described as uniform representations and transformed into the equivalent executable on any neuromorphic complete hardware-that is, it ensures programming-language portability, hardware completeness and compilation feasibility. We implement toolchain software to support the execution of different types of program on various typical hardware platforms, demonstrating the advantage of our system hierarchy, including a new system-design dimension introduced by the neuromorphic completeness. We expect that our study will enable efficient and compatible progress in all aspects of brain-inspired computing systems, facilitating the development of various applications, including artificial general intelligence.

3.
Cell Mol Life Sci ; 81(1): 359, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158709

ABSTRACT

Infiltration of monocyte-derived macrophages plays a crucial role in cardiac remodeling and dysfunction. The serum and glucocorticoid-inducible protein kinase 3 (SGK3) is a downstream factor of PI3K signaling, regulating various biological processes via an AKT-independent signaling pathway. SGK3 has been implicated in cardiac remodeling. However, the contribution of macrophagic SGK3 to hypertensive cardiac remodeling remains unclear. A cardiac remodeling model was established by angiotensin II (Ang II) infusion in SGK3-Lyz2-CRE (f/f, +) and wild-type mice to assess the function of macrophagic SGK3. Additionally, a co-culture system of SGK3-deficient or wild-type macrophages and neonatal rat cardiomyocytes (CMs) or neonatal rat fibroblasts (CFs) was established to evaluate the effects of SGK3 and the underlying mechanisms. SGK3 levels were significantly elevated in both peripheral blood mononuclear cells and serum from patients with heart failure. Macrophage SGK3 deficiency attenuated Ang II-induced macrophage infiltration, myocardial hypertrophy, myocardial fibrosis, and mitochondrial oxidative stress. RNA sequencing suggested Ndufa13 as the candidate gene in the effect of SGK3 on Ang II-induced cardiac remolding. Downregulation of Ndufa13 in CMs and CFs prevented the suppression of cardiac remodeling caused by SGK3 deficiency in macrophages. Mechanistically, the absence of SGK3 led to a reduction in IL-1ß secretion by inhibiting the NLRP3/Caspase-1/IL-1ß pathway in macrophages, consequently suppressing upregulated Ndufa13 expression and mitochondrial oxidative stress in CMs and CFs. This study provides new evidence that SGK3 is a potent contributor to the pathogenesis of hypertensive cardiac remodeling, and targeting SGK3 in macrophages may serve as a potential therapy for cardiac remodeling.


Subject(s)
Angiotensin II , Macrophages , Myocytes, Cardiac , Oxidative Stress , Protein Serine-Threonine Kinases , Ventricular Remodeling , Animals , Angiotensin II/pharmacology , Macrophages/metabolism , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Humans , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Signal Transduction , Heart Failure/metabolism , Heart Failure/pathology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Mice, Knockout , Cells, Cultured
4.
Oncologist ; 2024 Nov 04.
Article in English | MEDLINE | ID: mdl-39494888

ABSTRACT

BACKGROUND: This study aimed to evaluate the efficacy and safety of pegylated liposomal doxorubicin (PLD) for patients with partially platinum-sensitive, platinum-resistant, or platinum-refractory ovarian cancer. METHODS: Patients with partially platinum-sensitive, platinum-resistant, or platinum-refractory ovarian cancer were recruited in this prospective, open-label, single-arm, multicenter study. Eligible patients were given 4-6 cycles of PLD (40 mg/m2 on day 1, every 4 weeks). The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR), quality of life, and safety. Exploratory endpoints included the change trend of CA125 and platinum-free interval. RESULTS: Between June 2017 and November 2020, 167 eligible patients were included in the full analysis set. The median PFS and OS were 6.8 months (95% CI, 4.4-9.3 months) and 19.1 months (95% CI, 15.0-23.3 months), respectively. The ORR and DCR were 32.3% and 60.5%, respectively. The ORR (62.3 vs 22.5%) and DCR (84.9 vs 60.7%) of patients with a CA125 decrease after the first cycle were significantly higher than those without a CA125 decrease (all P < .05). Grade ≥ 3 and serious adverse events were reported in 9.9% and 3.9% of patients, respectively. No treatment-related death was observed. CONCLUSION: PLD showed promising efficacy and manageable tolerability in patients with partially platinum-sensitive, platinum-resistant, or platinum-refractory ovarian cancer.ClinicalTrials.gov Identifier: Chinese Clinical Trial Registry, ChiCTR1900022962.

5.
Analyst ; 149(13): 3661-3672, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38819086

ABSTRACT

Continuous-flow ventricular assist devices (CFVAD) and counterpulsation devices (CPD) are used to treat heart failure (HF). CFVAD can diminish pulsatility, but pulsatile modes have been implemented to increase vascular pulsatility. The effects of CFVAD in a pulsatile mode and CPD support on the function of endothelial cells (ECs) are yet to be investigated. In this study, two in vitro microfluidic models for culturing ECs are proposed to reproduce blood pressure (BP) and wall shear stress (WSS) on the arterial endothelium while using these medical devices. The layout and parameters of the two microfluidic systems were optimized based on the principle of hemodynamic similarity to efficiently simulate physiological conditions. Moreover, the unique design of the double-pump and double afterload systems could successfully reproduce the working mode of CPDs in an in vitro microfluidic system. The performance of the two systems was verified by numerical simulations and in vitro experiments. BP and WSS under HF, CFVAD in pulsatile modes, and CPD were reproduced accurately in the systems, and these induced signals improved the expression of Ca2+, NO, and reactive oxygen species in ECs, proving that CPD may be effective in normalizing endothelial function and replacing CFVAD to a certain extent to treat non-severe HF. This method offers an important tool for the study of cell mechanobiology and a key experimental basis for exploring the potential value of mechanical circulatory support devices in reducing adverse events and improving outcomes in the treatment of HF in the future.


Subject(s)
Heart-Assist Devices , Pulsatile Flow , Humans , Endothelial Cells/cytology , Reactive Oxygen Species/metabolism , Lab-On-A-Chip Devices , Stress, Mechanical , Human Umbilical Vein Endothelial Cells , Counterpulsation/instrumentation , Counterpulsation/methods , Nitric Oxide/metabolism
6.
BMC Cardiovasc Disord ; 24(1): 499, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294556

ABSTRACT

BACKGROUND: Rapid progression of non-target lesions (NTLs) leads to a high incidence of NTL related cardiac events post-PCI, which accounting half of the recurrent cardiac events. It is important to identify the risk factors and establish an accurate clinical prediction model for the rapid progression of NTLs post-PCI. PCSK9 inhibitors lower LDL-c levels significantly, also show the anti-inflammation effect, and may have the potential to reduce the rapid progression of NTLs post-PCI. We tried to test this hypothesis and explore the potential mechanisms. METHODS: This retrospective study included 1250 patients who underwent the first PCI and underwent repeat coronary angiography for recurrence of chest pain within 24 months. General characteristics, laboratory tests and inflammatory factors(IL-10, IL-6, IL-8, IL-1ß, sIL-2R, and TNF-α) were collected. Machine learning (LASSO regression) was mainly employed to select the important characteristic risk factors for the rapid progression of NTLs post-PCI and build prediction models. Finally, mediator analysis was employed to explore the potential mechanisms by which PCSK9 inhibitors reduce the rapid progression of NTLs post-PCI. RESULTS: There were more diabetes, less beta-blockers and PCSK9 inhibitors application, higher HbA1c, LDL-c, ApoB, TG, TC, uric acid, hs-CRP, TNF-α, IL-6, IL-8, and sIL-2R in NTL progressed group. LDL-c, hs-CRP, IL-8, and sIL-2R were characteristic risk factors for the rapid progression of NTLs post-PCI, combining LDL-c, hs-CRP, IL-8, and sIL-2R builds the optimal model for predicting the rapid progression of NTLs post-PCI (AUC = 0.632). LDL-c had a clear and incomplete mediating effect (95% CI, mediating effect: 51.56%) in the reduction of the progression of NTLs by PCSK9 inhibitors, and there was a possible mediating effect of IL-8 (90% CI), and sIL-2R (90% CI). CONCLUSIONS: LDL-c, hs-CRP, IL-8, and sIL-2R may be the key characteristic risk factors for the rapid progression of NTLs post-PCI, and combining these parameters might predict the rapid progression of NTLs post-PCI. The application of PCSK9 inhibitors had a negative correlation with the rapid progression of NTLs. In addition to the significant LDL-c-lowering, PCSK9 inhibitors may reduce the rapid progression of NTLs by reducing local inflammation of plaque. TRIAL REGISTRATION: ChiCTR2200058529; Date of registration: 2022-04-10.


Subject(s)
Biomarkers , Cholesterol, LDL , Coronary Artery Disease , Disease Progression , Inflammation Mediators , PCSK9 Inhibitors , Percutaneous Coronary Intervention , Humans , Male , Female , Retrospective Studies , Middle Aged , Biomarkers/blood , Treatment Outcome , Aged , Time Factors , Risk Factors , Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/drug therapy , Coronary Artery Disease/therapy , Percutaneous Coronary Intervention/adverse effects , Cholesterol, LDL/blood , Risk Assessment , Inflammation Mediators/blood , Dyslipidemias/drug therapy , Dyslipidemias/blood , Dyslipidemias/diagnosis , Coronary Angiography , Proprotein Convertase 9
7.
Int J Med Sci ; 21(2): 369-375, 2024.
Article in English | MEDLINE | ID: mdl-38169534

ABSTRACT

Heart failure is a condition where reduced levels of adenosine triphosphate (ATP) affect energy supply in myocardial cells. Nicotinamide adenine dinucleotide (NAD+) plays a crucial role as a coenzyme for electron transfer in energy metabolism. Decreased NAD+ levels in myocardial cells lead to inadequate ATP production and increased susceptibility to heart failure. Researchers are exploring ways to increase NAD+ levels to alleviate heart failure. Targets such as sirtuin2 (sirt2), sirtuin3 (sirt3), Poly (ADP-ribose) polymerase (PARP), and diastolic regulatory proteins are being investigated. NAD+ supplementation has shown promise, even in heart failure with preserved ejection fraction (HFpEF). By focusing on NAD+ as a central component of energy metabolism, it is possible to improve myocardial activity, heart function, and address energy deficiency in heart failure.


Subject(s)
Heart Failure , Humans , NAD/metabolism , Stroke Volume , Energy Metabolism , Poly(ADP-ribose) Polymerases/metabolism , Adenosine Triphosphate/metabolism
8.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338804

ABSTRACT

Phosphorylation site prediction has important application value in the field of bioinformatics. It can act as an important reference and help with protein function research, protein structure research, and drug discovery. So, it is of great significance to propose scientific and effective calculation methods to accurately predict phosphorylation sites. In this study, we propose a new method, Attenphos, based on the self-attention mechanism for predicting general phosphorylation sites in proteins. The method not only captures the long-range dependence information of proteins but also better represents the correlation between amino acids through feature vector encoding transformation. Attenphos takes advantage of the one-dimensional convolutional layer to reduce the number of model parameters, improve model efficiency and prediction accuracy, and enhance model generalization. Comparisons between our method and existing state-of-the-art prediction tools were made using balanced datasets from human proteins and unbalanced datasets from mouse proteins. We performed prediction comparisons using independent test sets. The results showed that Attenphos demonstrated the best overall performance in the prediction of Serine (S), Threonine (T), and Tyrosine (Y) sites on both balanced and unbalanced datasets. Compared to current state-of-the-art methods, Attenphos has significantly higher prediction accuracy. This proves the potential of Attenphos in accelerating the identification and functional analysis of protein phosphorylation sites and provides new tools and ideas for biological research and drug discovery.


Subject(s)
Amino Acids , Proteins , Animals , Mice , Humans , Phosphorylation , Binding Sites , Proteins/chemistry , Amino Acids/chemistry , Tyrosine , Computational Biology/methods
9.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063028

ABSTRACT

The interactions between plants and rhizosphere microbes mediated by plant root exudates are increasingly being investigated. The root-derived metabolites of medicinal plants are relatively diverse and have unique characteristics. However, whether medicinal plants influence their rhizosphere microbial community remains unknown. How medicinal plant species drive rhizosphere microbial community changes should be clarified. In this study involving high-throughput sequencing of rhizosphere microbes and an analysis of root exudates using a gas chromatograph coupled with a time-of-flight mass spectrometer, we revealed that the root exudate metabolites and microorganisms differed among the rhizosphere soils of five medicinal plants. Moreover, the results of a correlation analysis indicated that bacterial and fungal profiles in the rhizosphere soils of the five medicinal plants were extremely significantly or significantly affected by 10 root-associated metabolites. Furthermore, among the 10 root exudate metabolites, two (carvone and zymosterol) had opposite effects on rhizosphere bacteria and fungi. Our study findings suggest that plant-derived exudates modulate changes to rhizosphere microbial communities.


Subject(s)
Bacteria , Microbiota , Plant Roots , Plants, Medicinal , Rhizosphere , Soil Microbiology , Plant Roots/microbiology , Plant Roots/metabolism , Plants, Medicinal/microbiology , Plants, Medicinal/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Plant Exudates/metabolism , Fungi/metabolism
10.
BMC Genomics ; 24(1): 57, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36721086

ABSTRACT

OBJECTIVES: To explore the causes of sudden unexpected death (SUD) and to search for high-risk people, whole exome sequencing (WES) was performed in families with SUDs.  METHODS: Whole exome sequencing of 25 people from 14 SUD families were screened based on cardiac disease-associated gene variants, and their echocardiograms and electrocardiograms (ECG) were also examined. The protein function of mutated genes was predicted by SIFT, PolyPhen2 and Mutation Assessor. RESULTS: In the group of 25 people from 14 SUD families, 49 single nucleotide variants (SNVs) of cardiac disease-associated genes were found and verified by Sanger sequencing. 29 SNVs of 14 cardiac disorder-related genes were predicted as pathogens by software. Among them, 7 SNVs carried by two or more members were found in 5 families, including SCN5A (c.3577C > T), IRX4 (c.230A > G), LDB3 (c.2104 T > G), MYH6 (c.3G > A), MYH6 (c.3928 T > C), TTN (c.80987C > T) and TTN (c.8069C > T). 25 ECGs were collected. In summary, 4 people had J-point elevation, 2 people had long QT syndrome (LQTS), 4 people had prolonged QT interval, 3 people had T-wave changes, 3 people had sinus tachycardia, 4 people had sinus bradycardia, 4 people had left side of QRS electrical axis, and 3 people had P wave broadening. Echocardiographic results showed that 1 person had atrial septal defect, 1 person had tricuspid regurgitation, and 2 people had left ventricular diastolic dysfunction. CONCLUSIONS: Of the 14 heart disease-associated genes in 14 SUDs families, there are 7 possible pathological SNVS may be associated with SUDs. Our results indicate that people with ECG abnormalities, such as prolonged QT interval, ST segment changes, T-wave change and carrying the above 7 SNVs, should be the focus of prevention of sudden death.


Subject(s)
Heart Diseases , Humans , Exome Sequencing , China , Death, Sudden , Mutation
11.
Anal Chem ; 95(26): 9983-9989, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37339250

ABSTRACT

Organic photoelectrochemical transistor (OPECT) bioanalysis has recently emerged as a promising avenue for biomolecular sensing, providing insight into the next-generation of photoelectrochemical biosensing and organic bioelectronics. Herein, this work validates the direct enzymatic biocatalytic precipitation (BCP) modulation on a flower-like Bi2S3 photosensitive gate for high-efficacy OPECT operation with high transconductance (gm), which is exemplified by a prostate-specific antigen (PSA)-dependent hybridization chain reaction (HCR) and subsequent alkaline phosphatase (ALP)-enabled BCP reaction toward PSA aptasensing. It has been shown that light illumination could ideally achieve the maximized gm at zero gate bias, and BCP could efficiently modulate the device's interfacial capacitance and charge-transfer resistance, resulting in a significantly changed channel current (IDS). The as-developed OPECT aptasensor realizes good analysis performance for PSA with a detection limit of 10 fg mL-1. This work features direct BCP modulation of organic transistors and is expected to stimulate further interest in exploring advanced BCP-interfaced bioelectronics with unknown possibilities.


Subject(s)
Biosensing Techniques , Quantum Dots , Humans , Male , Prostate-Specific Antigen/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Nucleic Acid Hybridization , Quantum Dots/chemistry , Limit of Detection
12.
BMC Infect Dis ; 23(1): 431, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365506

ABSTRACT

BACKGROUND: Sepsis has a high mortality rate, which is expensive to treat, and is a major drain on healthcare resources; it seriously impacts the quality of human life. The clinical features of positive or non-positive blood cultures have been reported, but the clinical features of sepsis with different microbial infections and how they contribute to clinical outcomes have not been adequately described. METHODS: We extracted clinical data of septic patients with a single pathogen from the online Medical Information Mart for Intensive Care(MIMIC)-IV database. Based on microbial cultures, patients were classified into Gram-negative, Gram-positive, and fungal groups. Then, we analyzed the clinical characteristics of sepsis patients with Gram-negative, Gram-positive, and fungal infections. The primary outcome was 28-day mortality. The secondary outcomes were in-hospital mortality, the length of hospital stay, the length of ICU stay, and the ventilation duration. In addition, Kaplan-Meier analysis was used for the 28-day cumulative survival rate of patients with sepsis. Finally, we performed further univariate and multivariate regression analyses for 28-day mortality and created a nomogram for predicting 28-day mortality. RESULTS: The analysis showed that bloodstream infections showed a statistically significant difference in survival between Gram-positive and fungal organisms; drug resistance only reached statistical significance for Gram-positive bacteria. Through univariate and multivariate analysis, it was found that both the Gram-negative bacteria and fungi were independent risk factors for the short-term prognosis of sepsis patients. The multivariate regression model showed good discrimination, with a C-index of 0.788. We developed and validated a nomogram for the individualized prediction of 28-day mortality in patients with sepsis. Application of the nomogram still gave good calibration. CONCLUSIONS: Organism type of infection is associated with mortality of sepsis, and early identification of the microbiological type of a patient with sepsis will provide an understanding of the patient's condition and guide treatment.


Subject(s)
Gram-Negative Bacterial Infections , Sepsis , Humans , Gram-Negative Bacterial Infections/microbiology , Retrospective Studies , Sepsis/drug therapy , Prognosis , Gram-Negative Bacteria , Intensive Care Units
13.
Plant Dis ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37283552

ABSTRACT

Wax apple (Syzygium samarangense) is an important fruit tree widely cultivated in China. Yield losses are usually serious due to different diseases among which anthracnose (Colletotrichum spp.) is one of the most damaging (He et al, 2019). This disease was found in Yunnan, China and an average incidence of 56.7% diseased leaves was recorded in21 orchards surveyed in July2021. The disease lesions on leaves were circular, angular or oval (7.2-15.6 mm), with whitish center and brown outer area surrounded by a yellow halo; irregular spots or blight areas formed later. It can also infect fruits forming pale-brown, circular and sunken spots before harvest and rot of stored fruits. Diseased leaves were sampled from orchards in Ximeng (N117.78oE39.89o) and Ninger (E101.04oN23.05o) counties of Yunnan for fungal isolation; three and five pure isolates were recovered from Ximeng (LWTJ1-LWTJ3) and Ninger (LB4-LB8) samples, respectively, by plating disinfested tissue (surface-sterilized with 2% NaClO3) on potato dextrose agar (PDA) followed by hyphal tip purification and incubation at 25oC. Two repeated tests following Koch's postulates were conducted to verify pathogenicity of the eight isolates. In each test, three healthy seedlings per isolate were sprayed with conidia suspenson (2.26×105cfu/mL) until runoff from leaves while control plants were sprayed with sterile water. The plants were kept in the dark at RH100 for 24 h in a black box and then in a growth chamber (28oC, RH>90% and lighting 12h/d). Detached fruits were inoculated with mycelial discs on the puncture-wound surface. Anthracnose symptoms developed on all seedlings and fruits inoculated with LWTJ2 or LB4 isolates, which were re-isolated from lesions of inoculated leaf/fruit, completing Koch's postulates. Control plants were healthy and symptomless. LWTJ2 and LB4 isolates were morphologically the same: the colonies on PDA were circular, pale-white, with cottony surface and readily forming orange conidium masses. The hyphae were hyaline, septate, branched mostly in near right angles. The conidia were hyaline, one-celled, smooth-walled, cylindrical with round ends, 9.8-17.5 (av.13.8) µm×4.4-6.5 (5.6) µm. The teleomorph was not observed in culture or on orchard trees. The morphological characters were consistent with those of C. siamense described by Weir et al (2012). The internal transcribed spacer region (ITS) was amplified from the two isolates by PCR and sequenced (1990) and were 545 bp in length (OL963924 & OL413460). BLAST analysis showed that both were 100% identical and they shared 99.08% identity with C. siamense WZ-365 from the ITS region (MN856443).The Tub2 (788 bp, ON637119) and Cal (768 bp, ON622249) genes (Weir et al, 2012) of LB4 were also obtained and they shared closest identity (99.45% & 100%) with those of C. siamense WZ-365 as well. Phylogenetic tree (neighbor-joining) analysis of the concatenated sequence of ITS, Tub2 and Cal genes of LB4 and those of related Colletotrichum spp. showed that LB4 clustered IN the same end-branch with C. siamense ICMP18578 (Bootstrap sup. = 98%). Thus, C. siamense was identified as the pathogen of wax apple anthracnose in Yunnan. It caused anthracnose on other crops as oranges and cacao (Azad et al, 2020). Also, C. fructicola and C. syzygicola were identified as pathogens of wax apple anthracnose in Thailand (Al-Obaidi et al, 2017). To our knowledge, this is the first report of C. siamense causing wax apple anthracnose in China.

14.
Fa Yi Xue Za Zhi ; 39(2): 121-128, 2023 Apr 25.
Article in English, Zh | MEDLINE | ID: mdl-37277374

ABSTRACT

OBJECTIVES: To explore the cytotoxicity of four wild mushrooms involved in a case of Yunnan sudden unexplained death (YNSUD), to provide the experimental basis for prevention and treatment of YNSUD. METHODS: Four kinds of wild mushrooms that were eaten by family members in this YNSUD incident were collected and identified by expert identification and gene sequencing. Raw extracts from four wild mushrooms were extracted by ultrasonic extraction to intervene HEK293 cells, and the mushrooms with obvious cytotoxicity were screened by Cell Counting Kit-8 (CCK-8). The selected wild mushrooms were prepared into three kinds of extracts, which were raw, boiled, and boiled followed by enzymolysis. HEK293 cells were intervened with these three extracts at different concentrations. The cytotoxicity was detected by CCK-8 combined with lactate dehydrogenase (LDH) Assay Kit, and the morphological changes of HEK293 cells were observed under an inverted phase contrast microscope. RESULTS: Species identification indicated that the four wild mushrooms were Butyriboletus roseoflavus, Boletus edulis, Russula virescens and Amanita manginiana. Cytotoxicity was found only in Amanita manginiana. The raw extracts showed cytotoxicity at the mass concentration of 0.1 mg/mL, while the boiled extracts and the boiled followed by enzymolysis extracts showed obvious cytotoxicity at the mass concentration of 0.4 mg/mL and 0.7 mg/mL, respectively. In addition to the obvious decrease in the number of HEK293 cells, the number of synapses increased and the refraction of HEK293 cells was poor after the intervention of Amanita manginiana extracts. CONCLUSIONS: The extracts of Amanita manginiana involved in this YNSUD case has obvious cytotoxicity, and some of its toxicity can be reduced by boiled and enzymolysis, but cannot be completely detoxicated. Therefore, the consumption of Amanita manginiana is potentially dangerous, and it may be one of the causes of the YNSUD.


Subject(s)
Amanita , Humans , HEK293 Cells , China , Death, Sudden
15.
BMC Plant Biol ; 22(1): 613, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36575384

ABSTRACT

BACKGROUND: Fragaria nilgerrensis, which is a diploid wild strawberry with excellent drought-resistance, would provide useful candidate genes for improving drought resistance of cultivated strawberry. So far, its molecular regulatory networks involved in drought stress are unclear. We therefore investigated the drought response regulatory networks of F. nilgerrensis based on the integrated analysis of DNA methylation, transcriptome and physiological traits during four time points under drought stress.  RESULTS: The most differentially expressed genes and the physiological changes were found at 8 days (T8) compared with 0 day (T0, control). Methylome analysis revealed slight dynamic changes in genome-wide mC levels under drought conditions, while the most hypomethylated and hypermethylated regions were identified at T4 and T8. Association analysis of the methylome and transcriptome revealed that unexpressed genes exhibited expected hypermethylation levels in mCHG and mCHH contexts, and highly expressed genes exhibited corresponding hypomethylation levels in the gene body, but mCG contexts showed the opposite trend. Then, 835 differentially methylated and expressed genes were identified and grouped into four clustering patterns to characterize their functions. The genes with either negative or positive correlation between methylation and gene expression were mainly associated with kinases, Reactive Oxygen Species (ROS) synthesis, scavenging, and the abscisic acid (ABA) signal pathway. Consistently, weighted gene co-expression network analysis (WGCNA) revealed Hub genes including NCED, CYP707A2, PP2Cs and others that play important roles in the ABA signaling pathway. CONCLUSION: F. nilgerrensis drought is dominated by ABA-dependent pathways, possibly accompanied by ABA-independent crosstalk. DNA methylation may affect gene expression, but their correlation was more subtle and multiple types of association exist. Maintaining the balance between ROS regeneration and scavenging is an important factor in drought resistance in F. nilgerrensis. These results deepen our understanding of drought resistance and its application in breeding in strawberry plants.


Subject(s)
Fragaria , Transcriptome , Fragaria/genetics , Fragaria/metabolism , Droughts , Epigenome , Reactive Oxygen Species/metabolism , Plant Breeding , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics
16.
J Transl Med ; 20(1): 182, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449056

ABSTRACT

Pemphigus is an autoimmune skin disease. Ectopic lymphoid-like structures (ELSs) were found to be commonly present in the pemphigus lesions, presumably supporting in situ desmoglein (Dsg)-specific antibody production. Yet functional phenotypes and the regulators of Lymphoid aggregates in pemphigus lesions remain largely unknown. Herein, we used microarray technology to profile the gene expression in skin lesion infiltrating mononuclear cells (SIMC) from pemphigus patients. On top of that, we compared SIMC dataset to peripheral blood mononuclear cells (PBMC) dataset to characterize the unique role of SIMC. Functional enrichment results showed that mononuclear cells in skin lesions and peripheral blood both had over-represented IL-17 signaling pathways while neither was characterized by an activation of type I Interferon signaling pathways. Cell-type identification with relative subsets of known RNA transcripts (CIBERSORT) results showed that naïve natural killer cells (NK cells) were significantly more abundant in pemphigus lesions, and their relative abundance positively correlated with B cells abundance. Meanwhile, plasma cells population highly correlated with type 1 macrophages (M1) abundance. In addition, we also identified a lncRNA LINC01588 which might epigenetically regulate T helper 17 cells (Th17)/regulatory T cells (Treg) balance via the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Here, we provide the first transcriptomic characterization of lesion infiltrating immune cells which illustrates a distinct interplay network between adaptive and innate immune cells. It helps discover new regulators of local immune response, which potentially will provide a novel path forward to further uncover pemphigus pathological mechanisms and develop targeted therapy.


Subject(s)
Autoimmune Diseases , Pemphigus , RNA, Long Noncoding , Humans , Leukocytes, Mononuclear/metabolism , Pemphigus/genetics , Pemphigus/metabolism , RNA, Long Noncoding/genetics , Transcriptome/genetics
17.
J Dairy Sci ; 105(10): 7959-7971, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36028346

ABSTRACT

Milk proteins have received much awareness due to their bioactivity. However, their encapsulation functions have not attracted enough attention. Milk proteins as encapsulation walls can increase the bioavailability of bioactive compounds. As the benefits of bioactive compounds are critically determined by bioavailability, the effect of interactions between milk proteins and active substances is a critical topic. In the present review, we summarize the effects of milk proteins as encapsulation walls on the bioavailability of active substances with a special focus. The methods and mechanisms of interactions between milk proteins and active substances are also discussed. The evidence collected in the present review suggests that when active substances are encapsulated by milk proteins, the bioavailability of active substances can be significantly affected. This review also provides valuable guidelines for the use of milk protein-based microcarriers.


Subject(s)
Milk Proteins , Students , Animals , Biological Availability , Humans
18.
Plant Dis ; 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35822893

ABSTRACT

Bletilla striata is an important Chinese herbal plant grown widely in southwest China (Qian et al. 2021). Leaf blight was found on cultivated bletilla crops in Yunnan in 2021. The disease infected bletilla leaves and it was present in the field from April to November with the highest incidence (86% plants diseased) recorded in early September in Puer area. Foliar lesions were circular (Φ0.5-1.8 cm) or oval, with pale-gray center and narrow gray-brown outer area surrounded by a yellow halo. The lesions coalesced later to form large irregular spots or blighted areas on leaves. Symptomatic bletilla leaves were sampled from fields in Jiangcheng (E101.8672o, N22.5803o) and Simao (E109.7816o, N22.7891o) counties, Yunnan in July 2021. Seven fungal isolates were obtained from (BJ01-BJ04) and Simao samples (HBJ05-HBJ07) via lesion-tissue culture and hypha-tip purification on PDA medium. A pathogenicity test following Koch's Postulates (Grimms et al. 2006) was conducted using each isolate by inoculating 45-day old bletilla plant (n=30, Zihua cultivar) in a greenhouse through spraying hypha-spore suspension (3.25×104 CFU/mL) prepared with 14 d fresh DNA culture. Non-inoculated plants (n=30) were used as controls. The experiment was repeated once. The isolates BJ02 and HBJ06 (deposited in Yunnan Agric. Univ. Microbes Herbarium) were shown pathogenic to bletilla since similar lesions formed on seedlings 7 d post inoculation and pure fungal cultures with the same colony morphology as those of BJ02 and HBJ06 were re-isolated from leaf lesions 14 dpi. Isolates BJ02 and HBJ06 produced identical colony and conidium morphology after they were incubated at 25oC for 7 d on PDA. Colonies were circular, pale brown, Φ5.5-7.5cm, with villous surface and abundant aerial hyphae. Mycelia were septate, colorless, Φ3-4 µm and with acute-angled branches. Conidiophores developed from hyphae were erect, septate, pale-brown colored and 60-200 µm long. Conidia (produced scarcely and ripened slowly) were long-oval or petaloid, straight or slightly curved, brown, sized 28-45×10-14 µm. Most conidia were divided into 4 cells by 3 septa; the middle two were bigger than the basal and apex cells. Both BJ02 and HBJ06 were identified as Curvularia sp. based on their morphological characters (Tan et al. 2018). The rDNA-ITS, TEF1α and GAPDH genes (Tan et al. 2018) were amplified from these isolates with PCR (White et al. 1990) and sequenced. ITS sequences of the two isolates were both 574 bp (acc. no. OL587997 & OL336480) and 100% (574/574 bp) identical shown by blast comparison. Further blast analyses of ITS (574 bp, OL587997), TEF1α (532 bp, ON637120) and GAPDH (881 bp, ON637121) from isolate BJ02 showed that they were 99.27% (547/551 bp), 100% (842/842 bp) and 99.8% (507/508 bp) identical respectively with those of Curvularia reesii BRIP4358 (MH414907). The 3 genes of BJ02 were concatenated and phylogenic analysis (Tamura et al, 2013) of the concatenated sequence with those of Curvularia spp. showed that BJ02 was clustered with C. reesii BRIP4358 on the same end-branch of the tree with 100% confidence. Therefore, BJ02 and HBJ06 are the same species identified as Curvularia reesii and it is the pathogen causing bletilla leaf blight. C. reesii was first isolated from the air in Australia in 1963 and was named by Tan et al. in 2018. It has not been reported as a plant pathogen elsewhere. This is the first record of this fungus causing bletilla leaf blight in China. Keywords: Bletilla striata; leaf blight; Curvularia reesii; disease symptoms; pathogen morphology; multigene identification References (1) D.J. Grimes. Microbes, 1(5): 223-228, 2006. (2) L.H. Qian et al. Jiangshu Agric. Sci. 49(19): 64-71, 2021. (3) K. Tamura et al. Mol. Bio. & Evol. 30 (12): 2725- 2729, 2013. (4) Y. P. Tan et al. MycoKeys, 35: 1-25. 2018. (5) T.J. White et al. In: PCR Protocols: A Guide to Methods and Applications (eds. M.A. Innis et al.), Acad. Press, Inc. New York. 315-322, 1990.

19.
Int J Mol Sci ; 23(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35457080

ABSTRACT

Protein phosphorylation is one of the most critical post-translational modifications of proteins in eukaryotes, which is essential for a variety of biological processes. Plenty of attempts have been made to improve the performance of computational predictors for phosphorylation site prediction. However, most of them are based on extra domain knowledge or feature selection. In this article, we present a novel deep learning-based predictor, named TransPhos, which is constructed using a transformer encoder and densely connected convolutional neural network blocks, for predicting phosphorylation sites. Data experiments are conducted on the datasets of PPA (version 3.0) and Phospho. ELM. The experimental results show that our TransPhos performs better than several deep learning models, including Convolutional Neural Networks (CNN), Long-term and short-term memory networks (LSTM), Recurrent neural networks (RNN) and Fully connected neural networks (FCNN), and some state-of-the-art deep learning-based prediction tools, including GPS2.1, NetPhos, PPRED, Musite, PhosphoSVM, SKIPHOS, and DeepPhos. Our model achieves a good performance on the training datasets of Serine (S), Threonine (T), and Tyrosine (Y), with AUC values of 0.8579, 0.8335, and 0.6953 using 10-fold cross-validation tests, respectively, and demonstrates that the presented TransPhos tool considerably outperforms competing predictors in general protein phosphorylation site prediction.


Subject(s)
Deep Learning , Neural Networks, Computer , Phosphorylation , Protein Processing, Post-Translational , Proteins/metabolism
20.
J Cell Mol Med ; 25(3): 1739-1749, 2021 02.
Article in English | MEDLINE | ID: mdl-33469997

ABSTRACT

Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, alters the function of endocrine system and enhances the susceptibility to tumorigenesis in several hormone-dependent tumours as thyroid carcinoma. About 50% of papillary thyroid cancers (PTC), the most common type of thyroid malignancy, harbours the BRAFV600E mutation. This study aimed to investigate a potential combined effect of BPA exposure and BRAFV600E mutation on epithelial-mesenchymal transition (EMT) in PTC. Firstly, the level of BPA in plasma, the evaluation of BRAFV600E mutation and the level of EMT-related proteins in PTC samples were individually determined. Additionally, the migration, invasion, colony formation capacity and the expression of EMT-related proteins after exposure to BPA were precisely analysed in vitro thyroid cells genetically modified by the introduction of BRAFV600E mutation. Moreover, ERK-Cox2 signalling pathway was also introduced to explore the possible mechanism in PTC development. As expected, whether the clinical investigation or cultured thyroid cells demonstrated that BPA at a concentration compatible with human exposed levels (10-7  M) synergized with the BRAFV600E mutation promoted EMT via the activation of ERK-Cox2 signalling pathway. Our findings offer some evidence that BPA as an environmental risk factor can facilitate the progression of PTC harbouring BRAFV600E mutation.


Subject(s)
Air Pollutants, Occupational/adverse effects , Benzhydryl Compounds/adverse effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Estrogens, Non-Steroidal/adverse effects , Mutation , Phenols/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Adult , Aged , Alleles , Biomarkers, Tumor , Cell Movement/genetics , Female , Humans , Immunohistochemistry , MAP Kinase Signaling System , Male , Middle Aged , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL