Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Ann Bot ; 131(1): 199-214, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35671385

ABSTRACT

BACKGROUND AND AIMS: The Araceae are one of the most diverse monocot families with numerous morphological and ecological novelties. Plastid and mitochondrial genes have been used to investigate the phylogeny and to interpret shifts in the pollination biology and biogeography of the Araceae. In contrast, the role of whole-genome duplication (WGD) in the evolution of eight subfamilies remains unclear. METHODS: New transcriptomes or low-depth whole-genome sequences of 65 species were generated through Illumina sequencing. We reconstructed the phylogenetic relationships of Araceae using concatenated and species tree methods, and then estimated the age of major clades using TreePL. We inferred the WGD events by Ks and gene tree methods. We investigated the diversification patterns applying time-dependent and trait-dependent models. The expansions of gene families and functional enrichments were analysed using CAFE and InterProScan. KEY RESULTS: Gymnostachydoideae was the earliest diverging lineage followed successively by Orontioideae, Lemnoideae and Lasioideae. In turn, they were followed by the clade of 'bisexual climbers' comprised of Pothoideae and Monsteroideae, which was resolved as the sister to the unisexual flowers clade of Zamioculcadoideae and Aroideae. A special WGD event ψ (psi) shared by the True-Araceae clade occurred in the Early Cretaceous. Net diversification rates first declined and then increased through time in the Araceae. The best diversification rate shift along the stem lineage of the True-Araceae clade was detected, and net diversification rates were enhanced following the ψ-WGD. Functional enrichment analyses revealed that some genes, such as those encoding heat shock proteins, glycosyl hydrolase and cytochrome P450, expanded within the True-Araceae clade. CONCLUSIONS: Our results improve our understanding of aroid phylogeny using the large number of single-/low-copy nuclear genes. In contrast to the Proto-Araceae group and the lemnoid clade adaption to aquatic environments, our analyses of WGD, diversification and functional enrichment indicated that WGD may play a more important role in the evolution of adaptations to tropical, terrestrial environments in the True-Araceae clade. These insights provide us with new resources to interpret the evolution of the Araceae.


Subject(s)
Araceae , Phylogeny , Araceae/genetics , Gene Duplication , Adaptation, Physiological , Acclimatization , Evolution, Molecular
2.
BMC Genomics ; 23(1): 540, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896957

ABSTRACT

BACKGROUND: Viola philippica Cav. is the only source plant of "Zi Hua Di Ding", which is a Traditional Chinese Medicine (TCM) that is utilized as an antifebrile and detoxicant agent for the treatment of acute pyogenic infections. Historically, many Viola species with violet flowers have been misused in "Zi Hua Di Ding". Viola have been recognized as a taxonomically difficult genera due to their highly similar morphological characteristics. Here, all common V. philippica adulterants were sampled. A total of 24 complete chloroplast (cp) genomes were analyzed, among these 5 cp genome sequences were downloaded from GenBank and 19 cp genomes, including 2 "Zi Hua Di Ding" purchased from a local TCM pharmacy, were newly sequenced. RESULTS: The Viola cp genomes ranged from 156,483 bp to 158,940 bp in length. A total of 110 unique genes were annotated, including 76 protein-coding genes, 30 tRNAs, and four rRNAs. Sequence divergence analysis screening identified 16 highly diverged sequences; these could be used as markers for the identification of Viola species. The morphological, maximum likelihood and Bayesian inference trees of whole cp genome sequences and highly diverged sequences were divided into five monophyletic clades. The species in each of the five clades were identical in their positions within the morphological and cp genome tree. The shared morphological characters belonging to each clade was summarized. Interestingly, unique variable sites were found in ndhF, rpl22, and ycf1 of V. philippica, and these sites can be selected to distinguish V. philippica from samples all other Viola species, including its most closely related species. In addition, important morphological characteristics were proposed to assist the identification of V. philippica. We applied these methods to examine 2 "Zi Hua Di Ding" randomly purchased from the local TCM pharmacy, and this analysis revealed that the morphological and molecular characteristics were valid for the identification of V. philippica. CONCLUSIONS: This study provides invaluable data for the improvement of species identification and germplasm of V. philippica that may facilitate the application of a super-barcode in TCM identification and enable future studies on phylogenetic evolution and safe medical applications.


Subject(s)
Genome, Chloroplast , Viola , Bayes Theorem , Medicine, Chinese Traditional , Phylogeny , Viola/genetics
3.
Mol Phylogenet Evol ; 174: 107544, 2022 09.
Article in English | MEDLINE | ID: mdl-35690375

ABSTRACT

Koenigia, a genus proposed by Linnaeus, has a contentious taxonomic history. In particular, relationships among species and the circumscription of the genus relative to Aconogonon remain uncertain. To explore phylogenetic relationships of Koenigia with other members of tribe Persicarieae and to establish the timing of major evolutionary diversification events, genome skimming of organellar sequences was used to assemble plastomes and mitochondrial genes from 15 individuals representing 13 species. Most Persicarieae plastomes exhibit a conserved structure and content relative to other flowering plants. However, Koenigia delicatula has lost functional copies of all ndh genes and the intron from atpF. In addition, the rpl32 gene was relocated in the K. delicatula plastome, which likely occurred via overlapping inversions or differential expansion and contraction of the inverted repeat. The highly supported but conflicting relationships between plastome and mitochondrial trees and among gene trees complicates the circumscription of Koenigia, which could be caused by rapid diversification within a short period. Moreover, the plastome and mitochondrial trees revealed correlated variation in substitution rates among Persicarieae species, suggesting a shared underlying mechanism promoting evolutionary rate variation in both organellar genomes. The divergence of dwarf K. delicatula from other Koenigia species may be associated with the well-known Eocene Thermal Maximum 2 or Early Eocene Climatic Optimum event, while diversification of the core-Koenigia clade associates with the Mid-Miocene Climatic Optimum and the uplift of Qinghai-Tibetan Plateau and adjacent areas.


Subject(s)
Genome, Plastid , Polygonaceae , Polygonum , Evolution, Molecular , Introns , Phylogeny , Plastids/genetics , Polygonaceae/genetics , Polygonum/genetics
4.
Mol Phylogenet Evol ; 163: 107232, 2021 10.
Article in English | MEDLINE | ID: mdl-34129935

ABSTRACT

Plastid phylogenomic analyses have shed light on many recalcitrant relationships across the angiosperm Tree of Life and continue to play an important role in plant phylogenetics alongside nuclear data sets given the utility of plastomes for revealing ancient and recent introgression. Here we conduct a plastid phylogenomic study of Fagales, aimed at exploring contentious relationships (e.g., the placement of Myricaceae and some intergeneric relationships in Betulaceae, Juglandaceae, and Fagaceae) and dissecting conflicting phylogenetic signals across the plastome. Combining 102 newly sequenced samples with publically available plastomes, we analyzed a dataset including 256 species and 32 of the 34 total genera of Fagales, representing the largest plastome-based study of the order to date. We find strong support for a sister relationship between Myricaceae and Juglandaceae, as well as strongly supported conflicting signal for alternative generic relationships in Betulaceae and Juglandaceae. These conflicts highlight the sensitivity of plastid phylogenomic analyses to genic composition, perhaps due to the prevalence of uninformative loci and heterogeneity in signal across different regions of the plastome. Phylogenetic relationships were geographically structured in subfamily Quercoideae, with Quercus being non-monophyletic and its sections forming clades with co-distributed Old World or New World genera of Quercoideae. Compared against studies based on nuclear genes, these results suggest extensive introgression and chloroplast capture in the early diversification of Quercus and Quercoideae. This study provides a critical plastome perspective on Fagales phylogeny, setting the stage for future studies employing more extensive data from the nuclear genome.


Subject(s)
Fagales , Genome, Plastid , Base Sequence , Chloroplasts/genetics , Phylogeny , Plastids/genetics
5.
Plant Dis ; 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33151815

ABSTRACT

Common morning-glory (Ipomoea purpurea (L.) Roth, Convolvulaceae), an annual herbaceous vine native to South America, was first recorded to be cultivated in China in 1890, and since then it has invaded all provinces of China. It was one of the 18 alien invasive species in China (MEE. 2014). As an invasive weed, it can readily invade dry lands, orchards, and nurseries and compete for sunlight by wrapping other plants. On 20 September 2019 and 18 July 2020, I. purpurea was found to be parasitized by a dodder species (also Convolvulaceae) in Lushan Mountain (36°21'N, 118°3'E, 569 m elevation), Shandong province, China (Fig. S1). Within and area of ca. 100 m2, dozens of individuals of common morning-glory were parasitized by the leafless stems of dodder. After removal of the haustrial connection of the dodder stem from the I. purpurea stem, brownish black lesions around uneven holes were visible on the I. purpurea stem, with broken haustoria clearly visible to our naked eye remaining in the I. purpurea stem (Fig. S1). Anatomical results showed that the haustoria of dodder penetrate I. purpurea stem and xylem elements connect the vascular systems of both the parasitic and host plant (Fig. S1). Based on morphological characteristics of stems, inflorescences, calyx, corolla, stamens, and capsules as described in Costea et al. (2006), this dodder was identified as Cuscuta campestris Yunck. (i.e., field dodder). Field dodder is readily distinguished from C. chinensis and C. australis in China by the capsules with persistent corollas enveloping 1/3 or less of its base and the spreading and inflexed corolla lobes with acute to acuminate apices. In order to further confirm the identity of the species, total genomic DNA was extracted and sequenced using genome-skimming method as described in Qu et al. (2019). An 831-bp region of 18S-ITS1-5.8S-ITS2-26S for the dodder studied was assembled, examined, and deposited in GenBank under accession number MN718805. The new sequence has 100% similarity with other available sequences of C. campestris (accession number: KT383104, KT383150, KY968857). Phylogenetic analysis also placed the new dodder accession with other accessions of C. campestris (Fig. S2a). In addition, the plastome sequence of the dodder studied was assembled (86,727 bp in length) and deposited in GenBank under accession number MN708214, and a BLAST analysis found that it was 99.98% similar to that of C. gronovii (accession number: AM711639). The plastome of C. gronovii was published by Funk et al. (2007). However, Costea et al. (2015) indicated that Funk et al. (2007) misidentified C. campestris as C. gronovii. Furthermore, our phylogenetic tree strongly supported the identification of the dodder studied as C. campestris (Fig. S2b). Therefore, the dodder on common morning-glory in Shandong province was finally identified as C. campestris according to morphological and molecular evidence. The specimen of C. campestris on I. purpurea was deposited at the herbarium of the College of Life Sciences, Shandong Normal University (voucher number: 092012B). Field dodder, the second most common dodder species in North America, is the most widespread Cuscuta weed in the world and has been found in Africa, Asia, Australia, Europe, and South America (Holm et al. 1997). To our knowledge, this is the first report of the parasitic invasive weed C. campestris parasitizing the invasive weed I. purpurea in Shandong of China. This is also the first report of Cuscuta species parasitizing confamilial Ipomoea species, which is especially noteworthy given that the genus Cuscuta is sister to the genus Ipomoea. This study provides a good model for exploring gene flow between species of closely related genera with different lifestyle. Another implication of this study is that customs and departments of inspection and quarantine need to quarantine the seeds or plants of both dodders and common morning-glories.

6.
Front Plant Sci ; 14: 1166140, 2023.
Article in English | MEDLINE | ID: mdl-37324662

ABSTRACT

The plastome (plastid genome) represents an indispensable molecular data source for studying phylogeny and evolution in plants. Although the plastome size is much smaller than that of nuclear genome, and multiple plastome annotation tools have been specifically developed, accurate annotation of plastomes is still a challenging task. Different plastome annotation tools apply different principles and workflows, and annotation errors frequently occur in published plastomes and those issued in GenBank. It is therefore timely to compare available annotation tools and establish standards for plastome annotation. In this review, we review the basic characteristics of plastomes, trends in the publication of new plastomes, the annotation principles and application of major plastome annotation tools, and common errors in plastome annotation. We propose possible methods to judge pseudogenes and RNA-editing genes, jointly consider sequence similarity, customed algorithms, conserved domain or protein structure. We also propose the necessity of establishing a database of reference plastomes with standardized annotations, and put forward a set of quantitative standards for evaluating plastome annotation quality for the scientific community. In addition, we discuss how to generate standardized GenBank annotation flatfiles for submission and downstream analysis. Finally, we prospect future technologies for plastome annotation integrating plastome annotation approaches with diverse evidences and algorithms of nuclear genome annotation tools. This review will help researchers more efficiently use available tools to achieve high-quality plastome annotation, and promote the process of standardized annotation of the plastome.

7.
Biology (Basel) ; 11(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35053061

ABSTRACT

Aristidoideae is a subfamily in the PACMAD clade of family Poaceae, including three genera, Aristida, Stipagrostis, and Sartidia. In this study, the plastomes of Aristida adscensionis and Stipagrostis pennata were newly sequenced, and a total of 16 Aristidoideae plastomes were compared. All plastomes were conservative in genome size, gene number, structure, and IR boundary. Repeat sequence analysis showed that forward and palindrome repeats were the most common repeat types. The number of SSRs ranged from 30 (Sartidia isaloensis) to 54 (Aristida purpurea). Codon usage analysis showed that plastome genes preferred to use codons ending with A/T. A total of 12 highly variable regions were screened, including four protein coding sequences (matK, ndhF, infA, and rpl32) and eight non-coding sequences (rpl16-1-rpl16-2, ccsA-ndhD, trnY-GUA-trnD-GUC, ndhF-rpl32, petN-trnC-GCA, trnT-GGU-trnE-UUC, trnG-GCC-trnfM-CAU, and rpl32-trnL-UAG). Furthermore, the phylogenetic position of this subfamily and their intergeneric relationships need to be illuminated. All Maximum Likelihood and Bayesian Inference trees strongly support the monophyly of Aristidoideae and each of three genera, and the clade of Aristidoideae and Panicoideae was a sister to other subfamilies in the PACMAD clade. Within Aristidoideae, Aristida is a sister to the clade composed of Stipagrostis and Sartidia. The divergence between C4 Stipagrostis and C3 Sartidia was estimated at 11.04 Ma, which may be associated with the drought event in the Miocene period. Finally, the differences in carbon fixation patterns, geographical distributions, and ploidy may be related to the difference of species numbers among these three genera. This study provides insights into the phylogeny and evolution of the subfamily Aristidoideae.

8.
Front Plant Sci ; 13: 1002724, 2022.
Article in English | MEDLINE | ID: mdl-36407581

ABSTRACT

Chloridoideae is one of the largest subfamilies of Poaceae, containing many species of great economic and ecological value; however, phylogenetic relationships among the subtribes and genera of Cynodonteae are controversial. In the present study, we combined 111 plastomes representing all five tribes, including 25 newly sequenced plastomes that are mostly from Cynodonteae. Phylogenetic analyses supported the five monophyletic tribes of Chloridoideae, including Centropodieae, Triraphideae, Eragrostideae, Zoysieae and Cynodonteae. Simultaneously, nine monophyletic lineages were revealed in Cynodonteae: supersubtribe Boutelouodinae, subtribes Tripogoninae, Aeluropodinae, Eleusininae, Dactylocteniinae, supersubtribe Gouiniodinae, Cleistogenes and Orinus, and subtribe Triodiinae. Within the tribe of Cynodonteae, the basal lineage is supersubtribe Boutelouodinae and Tripogoninae is sister to the remaining lineages. The clade formed of Aeluropodinae and Eleusininae is sister to the clade composed of Dactylocteniinae, supersubtribe Gouiniodinae, Cleistogenes and Orinus, and subtribe Triodiinae. The clade comprising Dactylocteniinae and supersubtribe Gouiniodinae is sister to the clade comprising Cleistogenes, Orinus, and Triodiinae. Acrachne is a genus within Eleusininae but not within Dactylocteniinae. Molecular evidence determined that Diplachne is not clustered with Leptochloa, which indicated that Diplachne should not be combined into Leptochloa. Cleistogenes is sister to a clade composed of Orinus and Triodia, whereas the recently proposed subtribe Orininae was not supported. Cynodonteae was estimated to have experienced rapid divergence within a short period, which could be a major obstacle in resolving its phylogenetic relationships. Ancestral state reconstructions of morphological characters showed that the most recent common ancestor (MRCA) of Chloridoideae has a panicle, multiple florets in each spikelet, the peaked type of stomatal subsidiary cells, and a saddle-shaped phytoliths, while the ancestral morphological characters of Cynodonteae are the panicle, peaked type of stomatal subsidiary cells, sharp-cap cell typed and equal-base-cell microhair, and square-shaped phytoliths. Overall, plastome phylogenomics provides new insights into the phylogenetic relationships and morphological character evolution of Chloridoideae.

9.
Front Plant Sci ; 13: 1046253, 2022.
Article in English | MEDLINE | ID: mdl-36570890

ABSTRACT

Southwestern China, adjacent to the Qinghai-Tibetan Plateau (QTP), is known as a hotspot for plant diversity and endemism, and it is the origin and diversification center of Persicarieae. As one of the major lineages in Polygonaceae, Persicarieae represents a diverse adaptation to various habitats. As a result of morphological plasticity and poorly resolving molecular markers, phylogenetic relationships and infrageneric classification within Persicarieae have long been controversial. In addition, neither plastome phylogenomic studies nor divergence time estimates on a larger sample of Persicarieae species have been made thus far. We sequenced and assembled 74 complete plastomes, including all of the recognized genera within Persicarieae and their relatives. We conducted a comprehensive phylogenetic study of the major clades within Persicarieae and, based on the thus obtained robust phylogeny, also estimated divergence time and the evolution of diagnostic morphological traits. Major relationships found in previous phylogenetic studies were confirmed, including those of the backbone of the tree, which had been a major problem in previous phylogenies of the tribe. Phylogenetic analysis revealed strong support for Koenigia as sister to Bistorta, and together they were sister to the robustly supported Persicaria. Based on the phylogenetic and morphological evidence, we recognize five sections in Persicaria: Persicaria, Amphibia, Tovara, Echinocaulon, and Cephalophilon. It is estimated that the divergence of the Persicarieae began around the late Paleocene, with diversification concentrated in the Eocene and Miocene. In addition, it is suggested that the increasing westerly and monsoon winds in conjunction with the uplift of the QTP may be the driving force for origin and diversification of Persicarieae species. These results provide a valuable evolutionary framework for the study of adaptation in Polygonaceae and insights into plant diversification on the QTP and adjacent areas.

10.
Mitochondrial DNA B Resour ; 6(1): 174-175, 2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33537433

ABSTRACT

The complete chloroplast genome (plastome) of the Chenopodium acuminatum was assembled and annotated in this study. The complete plastome was composed of circular DNA molecules with a total length of 152,200 bp, comprising a large single-copy region (83,683 bp), a small single-copy region (18,131 bp), and two inverted repeat regions (25,193 bp). GC content of this complete plastome was 37.2%. In total, 113 unique genes were annotated, including 79 protein-coding genes (PCGs), 30 transfer RNAs, and 4 ribosomal RNAs. Phylogenomic analysis showed that C. acuminatum was closely related to C. album.

11.
Plants (Basel) ; 10(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419221

ABSTRACT

Eragrostideae Stapf, the second-largest tribe in Chloridoideae (Poaceae), is a taxonomically complex tribe. In this study, chloroplast genomes of 13 Eragrostideae species were newly sequenced and used to resolve the phylogenetic relationships within Eragrostideae. Including seven reported chloroplast genomes from Eragrostideae, the genome structure, number and type of genes, codon usage, and repeat sequences of 20 Eragrostideae species were analyzed. The length of these chloroplast genomes varied from 130,773 bp to 135,322 bp. These chloroplast genomes showed a typical quadripartite structure, including a large single-copy region (77,993-80,643 bp), a small single-copy region (12,410-12,668 bp), and a pair of inverted repeats region (19,394-21,074 bp). There were, in total, 129-133 genes annotated in the genome, including 83-87 protein-coding genes, eight rRNA genes, and 38 tRNA genes. Forward and palindromic repeats were the most common repeat types. In total, 10 hypervariable regions (rpl22, rpoA, ndhF, matK, trnG-UCC-trnT-GGU, ndhF-rpl32, ycf4-cemA, rpl32-trnL-UAG, trnG-GCC-trnfM-CAU, and ccsA-ndhD) were found, which can be used as candidate molecular markers for Eragrostideae. Phylogenomic studies concluded that Enneapogon diverged first, and Eragrostis including Harpachne is the sister to Uniola. Furthermore, Harpachne harpachnoides is considered as a species of Eragrostis based on morphological and molecular evidence. In addition, the interspecies relationships within Eragrostis are resolved based on complete chloroplast genomes. This study provides useful chloroplast genomic information for further phylogenetic analysis of Eragrostideae.

12.
Front Plant Sci ; 12: 638597, 2021.
Article in English | MEDLINE | ID: mdl-33841465

ABSTRACT

Cleistogenes (Orininae, Cynodonteae, Chloridoideae, Poaceae) is an ecologically important genus. The phylogenetic placement of Cleistogenes and phylogenetic relationships among Cleistogenes taxa remain controversial for a long time. To resolve the intra- and inter-generic relationships of Cleistogenes, the plastomes of 12 Cleistogenes taxa (including 8 species and 4 varieties), one Orinus species, 15 Triodia species, two Tripogon species, and two Aeluropus species were included in the present study. All the taxa showed a similar pattern in plastome structure, gene order, gene content, and IR boundaries. The number of simple sequence repeats ranged from 145 (O. kokonorica) to 161 (T. plurinervata and T. schinzii). Moreover, 1,687 repeats were identified in these taxa, including 1,012 forward, 650 palindromic, 24 reverse, and one complement. Codon usage analysis revealed that these plastomes contained 16,633 (T. stipoides) to 16,678 (T. tomentosa) codons. Sequence divergence analysis among Cleistogenes and closely related genera identified five non-coding regions (trnS-UGA-psbZ, rpl32-trnL-UAG, trnQ-UUG-psbK, trnD-GUC-psbM, trnT-GGU-trnE-UUC). Phylogenetic analysis of complete plastomes indicated that Cleistogenes is sister to a clade composed of Orinus and Triodia, whereas it did not support the sister relationship between the recently proposed subtribe Orininae (Cleistogenes and Orinus) and Triodia. The subtribe Orininae was not supported by our complete plastome data. The split between Cleistogenes and Orinus-Triodia clade go back to 14.01 Ma. Besides, our findings suggested that C. squarrosa and C. songorica are the successive early diverging groups in the phylogenetic analysis. The other 10 taxa are divided into two groups: a monophyletic group composed of Cleistogenes sp. nov. and C. caespitosa var. ramosa is sister to other eight Cleistogenes taxa. Cleistogenes was estimated to have experienced rapid divergence within a short period, which could be a major obstacle in resolving phylogenetic relationships within Cleistogenes. Collectively, our results provided valuable insights into the phylogenetic study of grass species.

13.
Nat Plants ; 7(8): 1015-1025, 2021 08.
Article in English | MEDLINE | ID: mdl-34282286

ABSTRACT

Inferring the intrinsic and extrinsic drivers of species diversification and phenotypic disparity across the tree of life is a major challenge in evolutionary biology. In green plants, polyploidy (or whole-genome duplication, WGD) is known to play a major role in microevolution and speciation, but the extent to which WGD has shaped macroevolutionary patterns of diversification and phenotypic innovation across plant phylogeny remains an open question. Here, we examine the relationship of various facets of genomic evolution-including gene and genome duplication, genome size, and chromosome number-with macroevolutionary patterns of phenotypic innovation, species diversification, and climatic occupancy in gymnosperms. We show that genomic changes, such as WGD and genome-size shifts, underlie the origins of most major extant gymnosperm clades, and notably, our results support an ancestral WGD in the gymnosperm lineage. Spikes of gene duplication typically coincide with major spikes of phenotypic innovation, while increased rates of phenotypic evolution are typically found at nodes with high gene-tree conflict, representing historic population-level dynamics during speciation. Most shifts in gymnosperm diversification since the rise of angiosperms are decoupled from putative WGDs and instead are associated with increased rates of climatic occupancy evolution, particularly in cooler and/or more arid climatic conditions, suggesting that ecological opportunity, especially in the later Cenozoic, and environmental heterogeneity have driven a resurgence of gymnosperm diversification. Our study provides critical insight on the processes underlying diversification and phenotypic evolution in gymnosperms, with important broader implications for the major drivers of both micro- and macroevolution in plants.


Subject(s)
Cycadopsida/genetics , Evolution, Molecular , Genetic Variation , Genome, Plant , Phylogeny , Polyploidy , Phenotype
14.
Mitochondrial DNA B Resour ; 5(1): 396-397, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-33366573

ABSTRACT

Alopecurus japonicus is a weed in summer crop field, which is harmful to wheat crops. The complete plastome of A. japonicus was reported in this study. The genome was 136,408 bp in length, consisting of an 80,512 bp large single-copy region, a 12,836 bp small single-copy region, and two 21,530 bp inverted repeat regions. The GC content of this plastome was 38.3%. A total of 112 genes were annotated for the plastome of A. japonicus, containing 78 protein-coding genes (PCGs), 30 tRNAs, and 4 rRNAs. Phylogenetic analysis showed that A. japonicus was sister to Alopecurus aequalis.

15.
Mitochondrial DNA B Resour ; 4(2): 2475-2476, 2019 Jul 13.
Article in English | MEDLINE | ID: mdl-33365589

ABSTRACT

Atriplex centralasiatica, an annual halophytic herb, is one of the most important Chinese herbal medicines, forages and indicator plants for saline-alkali soil. In this study, we report the complete plastome of A. centralasiatica. The plastome was 152,237 bp in length and comprises a large single-copy region (83,721 bp), a small single-copy region (18,096 bp), and a pair of inverted repeats (25,210 bp). It encodes 113 unique genes, including 79 protein-coding genes (PCGs), 30 tRNAs and 4 rRNAs. The overall GC content of this plastome was 37.3%. Phylogenomic analysis based on 21 plastomes revealed that A. centralasiatica was closely related to the genus Chenopodium.

16.
Mitochondrial DNA B Resour ; 4(2): 4216-4217, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-33366389

ABSTRACT

Alopecurus aequalis is a predominant weed species that distributes widely in North temperate regions. The complete plastome of A. aequalis is reported here. It is a circular molecular of 136,382 bp in length and consists of a large single-copy region (LSC: 80,455 bp), a small single-copy region (SSC: 12,849 bp), and two inverted repeats regions (IRs: 21,539 bp). GC content is 38.3%. This plastome encodes 112 unique genes, including 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. Phylogenetic tree shows that A. aequalis is sister to Poa annua.

17.
Genome Biol Evol ; 11(10): 2789-2796, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31504501

ABSTRACT

Plastid genomes (plastomes) of parasitic plants undergo dramatic reductions as the need for photosynthesis relaxes. Here, we report the plastome of the only known heterotrophic gymnosperm Parasitaxus usta (Podocarpaceae). With 68 unique genes, of which 33 encode proteins, 31 tRNAs, and four rRNAs in a plastome of 85.3-kb length, Parasitaxus has both the smallest and the functionally least capable plastid genome of gymnosperms. Although the heterotroph retains chlorophyll, all genes for photosynthesis are physically or functionally lost, making photosynthetic energy gain impossible. The pseudogenization of the three plastome-encoded light-independent chlorophyll biosynthesis genes chlB, chlL, and chlN implies that Parasitaxus relies on either only the light-dependent chlorophyll biosynthesis pathway or another regulation system. Nesting within a group of gymnosperms known for the absence of the large inverted repeat regions (IRs), another unusual feature of the Parasitaxus plastome is the existence of a 9,256-bp long IR. Its short length and a gene composition that completely differs from those of IR-containing gymnosperms together suggest a regain of this critical, plastome structure-stabilizing feature. In sum, our findings highlight the particular path of lifestyle-associated reductive plastome evolution, where structural features might provide additional cues of a continued selection for plastome maintenance.


Subject(s)
Cycadopsida/genetics , Evolution, Molecular , Genome, Plastid , Inverted Repeat Sequences , Genes, Essential , Photosynthesis/genetics
18.
Plant Methods ; 15: 50, 2019.
Article in English | MEDLINE | ID: mdl-31139240

ABSTRACT

BACKGROUND: Plastome (plastid genome) sequences provide valuable information for understanding the phylogenetic relationships and evolutionary history of plants. Although the rapid development of high-throughput sequencing technology has led to an explosion of plastome sequences, annotation remains a significant bottleneck for plastomes. User-friendly batch annotation of multiple plastomes is an urgent need. RESULTS: We introduce Plastid Genome Annotator (PGA), a standalone command line tool that can perform rapid, accurate, and flexible batch annotation of newly generated target plastomes based on well-annotated reference plastomes. In contrast to current existing tools, PGA uses reference plastomes as the query and unannotated target plastomes as the subject to locate genes, which we refer to as the reverse query-subject BLAST search approach. PGA accurately identifies gene and intron boundaries as well as intron loss. The program outputs GenBank-formatted files as well as a log file to assist users in verifying annotations. Comparisons against other available plastome annotation tools demonstrated the high annotation accuracy of PGA, with little or no post-annotation verification necessary. Likewise, we demonstrated the flexibility of reference plastomes within PGA by annotating the plastome of Rosa roxburghii using that of Amborella trichopoda as a reference. The program, user manual and example data sets are freely available at https://github.com/quxiaojian/PGA. CONCLUSIONS: PGA facilitates rapid, accurate, and flexible batch annotation of plastomes across plants. For projects in which multiple plastomes are generated, the time savings for high-quality plastome annotation are especially significant.

19.
Mitochondrial DNA B Resour ; 4(2): 2133-2134, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-33365441

ABSTRACT

Suaeda salsa, an annual succulent halophytic herb, is one of the major halophyte widely distributed in both saline inland and the intertidal zone. In this study, we report the complete chloroplast genome (plastome) of S. salsa. The plastome was 151,642 bp in length and comprises a large single-copy region (83,502 bp), a small single-copy region (17,780 bp), and a pair of inverted repeats (25,180 bp). It encodes 113 unique genes, including 79 protein-coding genes (PCGs), 30 tRNAs, and four rRNAs. The overall GC content of this plastome was 36.4%. Phylogenomic analysis based on 20 plastomes revealed that S. salsa was closely related to S. malacosperma.

20.
Mitochondrial DNA B Resour ; 4(2): 2780-2781, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-33365725

ABSTRACT

The complete chloroplast genome (plastome) of Suaeda glauca, an annual halophytic herb, was determined in this study. The plastome was 149,807 bp in size, containing a large single-copy region (82,162 bp), a small single-copy region (18,191 bp), and two inverted repeats regions (24,727 bp). The overall GC content of this plastome was 36.5%. In total, 113 unique genes, including 79 protein-coding genes (PCGs), 30 tRNAs and 4 rRNAs, were annotated. Phylogenomic analysis showed that S. glauca was sister to other Suaeda species.

SELECTION OF CITATIONS
SEARCH DETAIL