Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J AOAC Int ; 104(1): 61-67, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33351939

ABSTRACT

The citrus industry has grown exponentially as a result of increasing demand on its consumption, giving it high standing among other fruit crops. Therefore, the citrus sector seeks rapid, easy, and non-destructive approaches to evaluate in real time and in situ the external and internal changes in physical and nutritional quality at any stage of fruit development or storage. In particular, vitamin C is among the most important micronutrients for consumers, but its measurement relies on laborious analytical methodologies. In this study, a portable near infrared spectroscopy (NIRS) sensor was used in combination with chemometrics to develop robust and accurate models to study the ripeness of several citrus fruits (oranges, lemons, clementines, tangerines, and Tahiti limes) and their vitamin C content. Ascorbic acid, dehydroascorbic acid, and total vitamin C were determined by HILIC-HPLC-UV, while soluble solids and total acidity were evaluated by standard analytical procedures. Partial least squares regression (PLSR) was used to build regression models which revealed suitable performance regarding the prediction of quality and ripeness parameters in all tested fruits. Models for ascorbic acid, dehydroascorbic acid, total vitamin C, soluble solids, total acidity, and juiciness showed Rcv2 = 0.77-0.87, Rcv2 = 0.29-0.79, Rcv2 = 0.77-0.86, Rcv2 = 0.75-0.97, Rcv2 = 0.24-0.92, and Rcv2 = 0.38-0.75, respectively. Prediction models of oranges and Tahiti limes showed good to excellent performance regarding all tested conditions. The resulting models confirmed that NIRS technology is a time- and cost-effective approach for predicting citrus fruit quality, which can easily be used by the various stakeholders from the citrus industry.


Subject(s)
Citrus , Ascorbic Acid , Fruit , Least-Squares Analysis , Spectroscopy, Near-Infrared
2.
J AOAC Int ; 104(1): 53-60, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33619555

ABSTRACT

Fish fraud is a problematic issue for the industry. For it to be properly addressed will require the use of accurate, rapid, and cost-effective tools. In this work, near infrared reflectance spectroscopy (NIRS) was used to predict nutritional values (protein, lipids, and moisture) as well as to discriminate between sources (farmed vs. wild fish) and conditions (fresh or defrosted fish). Samples of five whitefish species-Alaskan pollock (Gadus chalcogrammu), Atlantic cod (G. morhua), European plaice (Pleuronectes platessa), common sole (Solea solea), and turbot (Psetta maxima)-including farmed, wild, fresh, and frozen ones, were scanned by a low-cost handheld near infrared reflectance spectrometer with a spectral range between 900 and 1700 nm. Several machine learning algorithms were explored for both regression and classification tasks, achieving precisions and coefficients of determination higher than 88% and 0.78, respectively. Principal component analysis (PCA) was used to cluster samples according to classes where good linear discriminations were denoted. Loadings from PCA revealed bands at 1150, 1200, and 1400 nm as the most discriminative spectral regions regarding classification of both source and condition, suggesting the absorbance of OH, CH, CH2, and CH3 groups as the most important ones. This study shows the use of NIRS and both linear and non-linear learners as a suitable strategy to address fish fraud and fish QC.


Subject(s)
Salmonidae , Animals , Cost-Benefit Analysis , Fraud , Nutritive Value , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL