Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
ScientificWorldJournal ; 2015: 529521, 2015.
Article in English | MEDLINE | ID: mdl-25861678

ABSTRACT

The Cichorium intybus flower development in fertile, cytoplasmic male sterility (CMS 524) and various phenotypes carrying the 524 male sterile cytoplasm was investigated macroscopically and by light microscopy. The development was similar in fertile and in male sterile florets up to meiosis, and then it was affected in anther wall structure and pollen grain development in male sterile floret. In the male sterile plants, the tapetum intrusion after meiosis was less remarkable, the microspores started to abort at vacuolate stage, the connective tissue collapsed, and endothecium failed to expand normally and did not undergo cell wall lignification, which prevented anther opening since the septum and stomium were not disrupted. Crosses undertaken in order to introduce the CMS 524 into two different nuclear backgrounds gave rise to morphologically diversified progenies due to different nuclear-mitochondrial interactions. Macroscopic and cytological investigations showed that pollen-donor plants belonging to Jupiter population had potential capacity to restore fertility while the CC line could be considered as a sterility maintainer.


Subject(s)
Cell Nucleus/genetics , Cichorium intybus/growth & development , Flowers/growth & development , Genome, Plant , Pollen , Cichorium intybus/genetics
2.
Theor Appl Genet ; 126(8): 2103-21, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23689744

ABSTRACT

High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.


Subject(s)
Cichorium intybus/genetics , Plant Infertility/genetics , Amplified Fragment Length Polymorphism Analysis , Breeding , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Genes, Plant/genetics , Genetic Linkage , Genome, Plant/genetics , Microsatellite Repeats/genetics , Phenotype
3.
ScientificWorldJournal ; 2012: 142983, 2012.
Article in English | MEDLINE | ID: mdl-23304076

ABSTRACT

A "novel" protocol is presented for easy and reliable estimation of soluble hydroxycinnamate levels in Cichorium intybus L. leaf tissue in large-scale experiments. Samples were standardized by punching 6 discs per leaf, and hydroxycinnamates were extracted by submerging the discs in 80% ethanol with 5% acetic acid for at least 48 h in the darkness at 4°C. Residual dry mass of the discs was used for a posteriori correction of compound levels. Chlorophyll was eliminated by chloroform, and the aqueous phases were transferred to microplates, dried, and dissolved in 50% methanol for HPLC analysis and storage. An HPLC program of 8 min was developed for the analysis of the extracts. Comparisons with extractions of liquid nitrogen powders indicated that the novel extraction method was reliable. No degradation of the major hydroxycinnamates-caftaric, chlorogenic, and chicoric acids-was observed, during maceration at ambient temperatures, or after storage for 1 year.


Subject(s)
Chemistry, Pharmaceutical/trends , Cichorium intybus , Coumaric Acids/analysis , Plant Leaves , Asteraceae , Chemistry, Pharmaceutical/methods , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Coumaric Acids/chemistry , Mass Spectrometry/methods
4.
BMC Plant Biol ; 10: 122, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20565992

ABSTRACT

BACKGROUND: In our laboratory we use cultured chicory (Cichorium intybus) explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15) sharing a similar genetic background. K59 is a responsive genotype (embryogenic) capable of undergoing complete cell reactivation i.e. cell de- and re-differentiation leading to somatic embryogenesis (SE), whereas C15 is a non-responsive genotype (non-embryogenic) and is unable to undergo SE. Previous studies 1 showed that the use of the beta-D-glucosyl Yariv reagent (beta-GlcY) that specifically binds arabinogalactan-proteins (AGPs) blocked somatic embryo production in chicory root explants. This observation indicates that beta-GlcY is a useful tool for investigating somatic embryogenesis (SE) in chicory. In addition, a putative AGP (DT212818) encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation 2. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used beta-GlcY to block SE in order to identify genes potentially involved in this process. RESULTS: Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. beta-GlcY-treatment of explants blocked in vitro SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by beta-GlcY-treatment. Eight genes were both differentially expressed between K59 and C15 genotypes during SE induction and transcriptionally affected by beta-GlcY-treatment: AGP (DT212818), 26 S proteasome AAA ATPase subunit 6 (RPT6), remorin (REM), metallothionein-1 (MT1), two non-specific lipid transfer proteins genes (SDI-9 and DEA1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), and snakin 2 (SN2). These results suggest that the 8 genes, including the previously-identified AGP gene (DT212818), could be involved in cell fate determination events leading to SE commitment in chicory. CONCLUSION: The use of two different chicory genotypes differing in their responsiveness to SE induction, together with beta-GlcY-treatment represented an efficient tool to discriminate cell reactivation from the SE morphogenetic pathway. Such an approach, together with microarray analyses, permitted us to identify several putative key genes related to the SE morphogenetic pathway in chicory.


Subject(s)
Cichorium intybus/embryology , Cichorium intybus/genetics , Gene Expression Profiling , Cell Wall/metabolism , Cichorium intybus/cytology , Culture Media , Expressed Sequence Tags , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genotype , Glucosides/pharmacology , Oligonucleotide Array Sequence Analysis , Phloroglucinol/analogs & derivatives , Phloroglucinol/pharmacology , RNA, Plant/genetics , Tissue Culture Techniques
5.
BMC Plant Biol ; 7: 27, 2007 Jun 06.
Article in English | MEDLINE | ID: mdl-17553130

ABSTRACT

BACKGROUND: Somatic embryogenesis (SE) is an asexual propagation pathway requiring a somatic-to-embryonic transition of differentiated somatic cells toward embryogenic cells capable of producing embryos in a process resembling zygotic embryogenesis. In chicory, genetic variability with respect to the formation of somatic embryos was detected between plants from a population of Cichorium intybus L. landrace Koospol. Though all plants from this population were self incompatible, we managed by repeated selfing to obtain a few seeds from one highly embryogenic (E) plant, K59. Among the plants grown from these seeds, one plant, C15, was found to be non-embryogenic (NE) under our SE-inducing conditions. Being closely related, we decided to exploit the difference in SE capacity between K59 and its descendant C15 to study gene expression during the early stages of SE in chicory. RESULTS: Cytological analysis indicated that in K59 leaf explants the first cell divisions leading to SE were observed at day 4 of culture. In contrast, in C15 explants no cell divisions were observed and SE development seemed arrested before cell reactivation. Using mRNAs isolated from leaf explants from both genotypes after 4 days of culture under SE-inducing conditions, an E and a NE cDNA-library were generated by SSH. A total of 3,348 ESTs from both libraries turned out to represent a maximum of 2,077 genes. In silico subtraction analysis sorted only 33 genes as differentially expressed in the E or NE genotype, indicating that SSH had resulted in an effective normalisation. Real-time RT-PCR was used to verify the expression levels of 48 genes represented by ESTs from either library. The results showed preferential expression of genes related to protein synthesis and cell division in the E genotype, and related to defence in the NE genotype. CONCLUSION: In accordance with the cytological observations, mRNA levels in explants from K59 and C15 collected at day 4 of SE culture reflected differential gene expression that presumably are related to processes accompanying early stages of direct SE. The E and NE library obtained thus represent important tools for subsequent detailed analysis of molecular mechanisms underlying this process in chicory, and its genetic control.


Subject(s)
Cichorium intybus/embryology , Expressed Sequence Tags , Cichorium intybus/genetics , Genotype , Reverse Transcriptase Polymerase Chain Reaction
6.
BMC Res Notes ; 3: 225, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20701751

ABSTRACT

BACKGROUND: The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. FINDINGS: Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. CONCLUSIONS: This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species.

SELECTION OF CITATIONS
SEARCH DETAIL