Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Bioprocess Biosyst Eng ; 47(3): 367-380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407617

ABSTRACT

In this study, the effects of CO2 addition on the growth performance and biochemical composition of the green microalga Tetradesmus obliquus cultured in a hybrid algal production system (HAPS) were investigated. The HAPS combines the characteristics of tubular photobioreactors (towards a better carbon dioxide dissolution coefficient) with thin-layer cascade system (with a higher surface-to-volume ratio). Experimental batches were conducted with and without CO2 addition, and evaluated in terms of productivity and biomass characteristics (elemental composition, protein and lipid contents, pigments and fatty acids profiles). CO2 enrichment positively influenced productivity, and proteins, lipids, pigments and unsaturated fatty acids contents in biomass. The HAPS herein presented contributes to the optimization of microalgae cultures in open systems, since it allows, with a simple adaptation-a transit of the cultivation through a tubular portion where injection and dissolution of CO2 is efficient-to obtain in TLC systems, greater productivity and better-quality biomass.


Subject(s)
Chlorophyceae , Microalgae , Photobioreactors , Biomass , Carbon Dioxide/metabolism , Fatty Acids/metabolism
2.
Extremophiles ; 28(1): 8, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133826

ABSTRACT

Mining activities generate large quantities of wastes that significantly alter the biogeochemistry and ecological structure of entire river basins. Microbial communities that develop in these areas present a variety of survival and adaptation mechanisms. Knowing this diversity at the molecular level is strategic both for understanding adaptive processes and for identifying genomes with potential use in bioremediation and bioprospecting. In this work, prokaryotic and eukaryotic communities were evaluated by meta-taxonomics (16S and 18S amplicons) in sediments and water bodies impacted by acid mine drainage in an important coal mining area in southern Brazil. Five sampling stations were defined on a gradient of impacts (pH 2.7-4.25). Taxon diversity was directly proportional to pH, being greater in sediments than in water. The dominant prokaryotic phyla in the samples were Proteobacteria, Actinobacteria, Acidobacteria, OD1, Nitrospirae, and Euryarchaeota, and among the eukaryotes, algae (Ochrophyta, Chlorophyta, Cryptophyceae), fungi (Basidiomycota, Ascomycota, and Cryptomycota), and protists (Ciliophora, Heterolobosea, Cercozoa). The prokaryotic genera Leptospirillum, Acidithiobacillus, Acidiphilium, Thiomonas, Thermogymnomonas, and Acidobacterium, and the eukaryotic genera Pterocystis and Poteriospumella were associated with more acidic conditions and higher metal concentrations, while the prokaryotic genera Sediminibacterium, Gallionella Geothrix, and Geobacter were more abundant in transitional environments.


Subject(s)
Bacteria , Microbiota , Brazil , Bacteria/genetics , Rivers/microbiology , Fungi , Water
3.
Ecotoxicol Environ Saf ; 174: 334-343, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30849653

ABSTRACT

Ulva ohnoi is a green macroalga with fast growth and high rates of nitrogen and phosphorus absorption. Recently, this species has been recorded in several places with record green tide formation in some of them. Using molecular tools, we herein report the first occurrence of this species in Brazil and demonstrate its potential for phytoremediation in typical environmental concentrations of Cd (0.625-15 µg L-1). Similarly, the effects of physicochemical parameters (salinity and temperature) on the toxicity and uptake efficiency of this species were evaluated. Molecular analysis of two sequences (1141 bp) obtained corroborates another 34 sequences for U. ohnoi obtained from GenBank. The addition of Cd in the medium affected photosynthetic parameters and reduced growth rate. U. ohnoi showed resistance to Cd when cultivated at 18 °C, S15 and 18-25 °C, S35, at concentrations between 0.625 and 2.5 µg. L-1 of Cd; yet, positive growth rate was maintained. Dose-dependent accumulation was observed in all combinations of factors used with a maximum value of 4.20 µg Cd per gram of dry seaweed at 15 µg. L-1 of Cd at 18 °C and S35. Maximum value of the concentration factor was 81.3 ±â€¯1.1% of Cd added at the concentration of 0.625 µg. L-1 to S15 and 18 °C. Our results demonstrate the potential of using U. ohnoi in the phytoremediation of Cd in saltwater or brackish water.


Subject(s)
Cadmium/toxicity , Seaweed/drug effects , Ulva/drug effects , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Brazil , Cadmium/metabolism , Dose-Response Relationship, Drug , Nitrogen/metabolism , Phosphorus/metabolism , Photosynthesis/drug effects , Salinity , Seaweed/metabolism , Temperature , Ulva/metabolism , Water Pollutants, Chemical/metabolism
4.
Harmful Algae ; 103: 102004, 2021 03.
Article in English | MEDLINE | ID: mdl-33980444

ABSTRACT

Raphidiopsis raciborskii (formerly Cylindrospermopsis raciborskii) is a freshwater cyanobacterium potentially producing saxitoxins (STX) and cylindrospermopsin. Its ecophysiological versatility enables it to form blooms in the most diverse types of environments, from tropical to temperate, and from relatively pristine to polluted. In Peri Lake, located in the subtropical south of Brazil, growing populations of STX-producing R. raciborskii have been detected since 1994, posing risks to the use of its waters that supply a population of about 100,000 inhabitants. Despite the existence of a monitoring system for the presence and toxicity of cyanobacteria in Peri Lake water, no assessment has been made in the coastal region, downstream of outflowing lake water, thereby potentially making available a toxic biomass to natural and cultivated shellfish populations in the salt water ecosystem. To address this problem, the present study evaluated environmental variables and STX concentration by profiling the outflowing waters between Peri Lake and the adjacent coastal zone. Laboratory experiments were carried out with three strains of R. raciborskii in order to confirm the effect of salinity on STX production and verify if Perna Perna mussels fed with R. raciborskii cultures would absorb and accumulate STX. Results showed that environmental concentrations of STX reach high levels (up to 6.31 µg L-1 STX eq.), especially in the warmer months, reaching the coastal zone. In laboratory tests, it was found that the strains tolerate salinities between 4 and 6 and that salinity influences the production of STX. In addition, mussels fed with R. raciborskii effectively absorb and accumulate STX, even in typically marine salinities (22 to 30), suggesting that R. raciborskii biomass remains available and toxic despite salinity shock. These results draw attention to the ecological and health risk associated with R. raciborskii blooms, both in the lake environment and in the adjacent marine environment, calling attention to the need to improve the monitoring and management systems for water and shellfish toxicity in the region of interest, as well as other places where toxic cyanobacteria of limnic origin can reach the coastal zone.


Subject(s)
Bivalvia , Cyanobacteria , Animals , Brazil , Cylindrospermopsis , Ecosystem , Saxitoxin
5.
Sci Total Environ ; 700: 134692, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31693960

ABSTRACT

Marine bioinvasions are increasing worldwide by a number of factors related to the anthroposphere, such as higher ship traffic, climate change and biotic communities' alterations. Generating information about species with high invasive potential is necessary to inform management decisions aiming to prevent their arrival and spread. Grateloupia turuturu, one of the most harmful invasive macroalgae, is capable of damaging ecosystem functions and services, and causing biodiversity loss. Here we developed an ecological niche model using occurrence and environmental data to infer the potential global distribution of G. turuturu. In addition, ecophysiological experiments were performed with G. turuturu populations from different climatic regions to test predictions regarding invasion risk. Our model results show high suitability in temperate and warm temperate regions around the world, with special highlight to some areas where this species still doesn't occur. Thalli representing a potential temperate region origin, were held at 10, 13, 16, 20 and 24 °C, and measurements of optimal quantum field (Fv/Fm) demonstrated a decrease of photosynthetic yield in the higher temperature. Thalli from the population already established in warm temperate South Atlantic were held at 18, 24 and 30 °C with high and low nutrient conditions. This material exposed to the higher temperature demonstrated a drop in photosynthetic yield and significant reduction of growth rate. The congregation of modelling and physiological approach corroborate the invasive potential of G. turuturu and indicate higher invasion risk in temperate zones. Further discussions regarding management initiatives must be fostered to mitigate anthropogenic transport and eventually promote eradication initiatives in source areas, with special focus in the South America. We propose that this combined approach can be used to assess the potential distribution and establishment of other marine invasive species.


Subject(s)
Biodiversity , Climate Change , Ecosystem , Introduced Species , Models, Theoretical
6.
Environ Technol ; 40(25): 3308-3317, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29708478

ABSTRACT

This study evaluated productivity, CO2 biofixation, and lipid content in biomass of the acidophilic microalga Chlamydomonas acidophila LAFIC-004 cultivated with five different carbon dioxide concentrations. The influence of carbon dioxide concentration on nutrient removal and pH was also investigated. Treated wastewater (secondary effluent) was used as culture medium. Five experimental setups were tested: T-0% - injection of atmospheric air (0.038% CO2), T-5% (5% CO2), T-10% (10% CO2), T-15% (15% CO2) and T-20% (20% CO2). The T-5% and T-10% experiments showed the highest values of productivity and CO2 biofixation, and maximum biomass dry weight was 0.48 ± 0.02 and 0.51 ± 0.03 g L-1, respectively. This acidophilic microalga proved to be suitable for carbon biofixation and removal of nutrients from secondary effluent of wastewater treatment plants with high CO2 concentration. All assays were performed without pH control. This microalga species presented high lipid content. However, fatty acid methyl esters (FAME) are not suitable for biodiesel use.


Subject(s)
Microalgae , Wastewater , Biomass , Carbon Dioxide , Lipids
7.
Environ Sci Pollut Res Int ; 25(12): 11775-11786, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29442312

ABSTRACT

Seaweeds living at their temperature limits of distribution are naturally exposed to physiological stressors, facing additional stress when exposed to coastal pollution. The physiological responses of seaweeds to environmental conditions combining natural and anthropogenic stressors provide important information on their vulnerability. We assessed the physiological effects and ultrastructural alterations of trace metals enrichment at concentrations observed in polluted regions within the temperature ranges of distribution of the endemic seaweed Halimeda jolyana, an important component of tropical southwestern Atlantic reefs. Biomass yield and photosynthetic performance declined substantially in samples exposed to metal, although photosynthesis recovered partially at the highest temperature when metal enrichment was ceased. Metal enrichment caused substantial ultrastructural alterations to chloroplasts regardless of temperatures. The lack of photosynthetic recovery at the lower temperatures indicates a higher vulnerability of the species at its temperature limits of distribution in the southwestern Atlantic.


Subject(s)
Chlorophyta/drug effects , Metals/toxicity , Seaweed/drug effects , Water Pollutants/toxicity , Biomass , Chloroplasts , Cold Temperature , Hot Temperature , Photosynthesis , Temperature
8.
Sci Total Environ ; 357(1-3): 120-7, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-15982719

ABSTRACT

In this work, cadmium phytotoxicity and quantitative sensitivity relationships between different hierarchical endpoints in plants cultivated in a contaminated soil were studied. Thus, germination rate, biomass growth and antioxidative enzyme activity (i.e. superoxide dismutase, peroxidase, catalase and glutathione reductase) in three terrestrial plants (Avena sativa L., Brassica campestris L. cv. Chinensis, Lactuca sativa L. cv. hanson) were analyzed. Plant growth tests were carried out according to an International Standard Organization method and the results were analyzed by ANOVA followed by Williams' test. The concentration of Cd2+ that had the smallest observed significant negative effect (LOEC) on plant biomass was 6.25, 12.5 and 50 mg Cd/kg dry soil for lettuce, oat and Chinese cabbage, respectively. Activity of all enzymes studied increased significantly compared to enzyme activity in plant controls. For lettuce, LOEC values (mg Cd/kg dry soil) for enzymic activity ranged from 0.05 (glutathione reductase) to 0.39 (catalase). For oat, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (for superoxide dismutase and glutathione reductase) to 0.39 (for catalase and peroxidase). For Chinese cabbage, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (peroxidase, catalase and glutathione reductase) to 0.39 (superoxide dismutase). Classical (i.e. germination and biomass) and biochemical (i.e. enzyme activity) endpoints were compared to establish a sensitivity ranking, which was: enzyme activity>biomass>germination rate. For cadmium-soil contamination, the determination of quantitative sensitivity relationships (QSR) between classical and antioxidative enzyme biomarkers showed that the most sensitive plant species have, generally, the lowest QSR values.


Subject(s)
Avena/drug effects , Brassica/drug effects , Cadmium/toxicity , Lactuca/drug effects , Soil Pollutants/toxicity , Antioxidants/metabolism , Avena/enzymology , Avena/growth & development , Biomarkers , Brassica/enzymology , Brassica/growth & development , Germination/drug effects , Lactuca/enzymology , Lactuca/growth & development , Oxidoreductases/metabolism
9.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469477

ABSTRACT

The coal mining activity is characterized by the generation of large amount of by-products. One of them is pyrite, which tends to acidify the water, solubilizing heavy metals. As a consequence the environment becomes acid and rich in heavy metals, selecting microorganisms able to survive in this condition, which are of great interest as bioremediation agents. This work describes the isolation and characterization of microorganisms from a coal mining area in Santa Catarina. These microorganisms comprised bacteria, fungi and yeasts resistant to zinc, nickel and cadmium.


A atividade de mineração do carvão é responsável pela geração de diferentes sub-produtos. Entre esses, está a pirita que acidifica a água e acelera o processo de solubilização de metais. Como conseqüência, o ambiente torna-se ácido e rico em metais pesados, os quais selecionam os microrganismos capazes de sobreviver nestas condições. Esses microrganismos podem, por sua vez, serem empregados como agentes para a biorremediação de áreas contaminadas com metais pesados. No presente trabalho é descrito o isolamento e a caracterização de bactérias, fungos e leveduras resistentes aos metais zinco, níquel e cádmio.

10.
Braz. j. microbiol ; 34(supl.1): 45-47, Nov. 2003. tab
Article in English | LILACS | ID: lil-389982

ABSTRACT

A atividade de mineração do carvão é responsável pela geração de diferentes sub-produtos. Entre esses, está a pirita que acidifica a água e acelera o processo de solubilização de metais. Como conseqüência, o ambiente torna-se ácido e rico em metais pesados, os quais selecionam os microrganismos capazes de sobreviver nestas condições. Esses microrganismos podem, por sua vez, serem empregados como agentes para a biorremediação de áreas contaminadas com metais pesados. No presente trabalho é descrito o isolamento e a caracterização de bactérias, fungos e leveduras resistentes aos metais zinco, níquel e cádmio.

SELECTION OF CITATIONS
SEARCH DETAIL