Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Allergol Immunopathol (Madr) ; 51(S Pt 1): 1-13, 2023.
Article in English | MEDLINE | ID: mdl-36924386

ABSTRACT

BACKGROUND: Sesame is a traditional oilseed comprising essential amino acids. However, the presence of allergens in sesame is a significant problem in its consumption; thus, this study attempted to reduce these allergens in sesame oilseeds. OBJECTIVE: The present study aimed to evaluate the effect of cold plasma processing on structural changes in proteins, and thereby the alteration of allergenicity in sesame milk. Method: Sesame milk (300 mL) was processed using atmospheric pressure plasma bubbling unit (dielectric barrier discharge, power: 200 V, and airflow rate: 16.6 mL/min) at different exposure times (10, 20, and 30 min). RESULTS: The efficiency of plasma-bubbling unit as measured by electron paramagnetic resonance in terms of producing reactive hydroxyl (OH) radicals proved that generation of reactive species increased with exposure time. Further, the plasma-processed sesame milk subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and differential scanning calorimetery analysis revealed that plasma bubbling increased the oxidation of proteins with respect to bubbling time. The structural analysis by Fourier transform infrared spectroscopy and circular dichroism revealed that the secondary structure of proteins was altered after plasma application. This change in the protein structure helped in changing the immunoglobulin E (IgE)-binding epitopes of the protein, which in turn reduced the allergen-binding capacity by 23% at 20-min plasma bubbling as determined by the sandwich-type enzyme-linked immunosorbent assay. However, 30-min plasma bubbling intended to increase allergenicity, possibly because of increase in IgE binding due to the generation of neo epitopes. CONCLUSION: These changes proved that plasma bubbling is a promising technology in oxidizing protein structure, and thereby reducing the allergenicity of sesame milk. However, increase in binding at 30-min bubbling is to be studied to facilitate further reduction of the binding capacity of IgE antibodies.


Subject(s)
Plasma Gases , Sesamum , Humans , Animals , Allergens , Milk , Plasma Gases/analysis , Epitopes/analysis , Immunoglobulin E
2.
Crit Rev Food Sci Nutr ; 62(7): 1782-1799, 2022.
Article in English | MEDLINE | ID: mdl-33207938

ABSTRACT

Pesticide residues in the food above the maximum permissible residual limit (MRL) for safe consumption are a severe concern today. Though unit operations employed in domestic and industrial-scale processing of foods such as high-temperature decontamination and chemical washings degrade the agrochemicals and reduce toxicity, eliminating pesticides from the fresh and raw fruits and vegetables with the retainment of nutritional and organoleptic attributes demand appropriate non-thermal technologies. In this review, the potential of novel technologies like the pulsed electric field, high-pressure processing, irradiation, ozone, ultrasonication, and cold plasma for the reduction of pesticides in fruits and vegetables have been discussed in terms of their mechanism of action, playing around factors, advantages, and limitations. All the reviewed non-thermal technologies exhibited promising effects on pesticide degradation with their unique mechanism of action. Also, these techniques' potential to reduce the pesticides below MRLs and yield nontoxic metabolites in fruits and vegetables were analyzed. However, investigating the impact of the technologies on the nutritional and organoleptic quality profile of the commodities at the processing conditions causing noticeable pesticide reduction and the pathways of degradation reactions of various pesticides with each emerging technology should be studied to enhance the applicability.


Subject(s)
Pesticide Residues , Pesticides , Food Contamination/analysis , Food Contamination/prevention & control , Fruit/chemistry , Pesticide Residues/analysis , Pesticides/analysis , Technology , Vegetables/chemistry
3.
Crit Rev Food Sci Nutr ; : 1-22, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35916765

ABSTRACT

Food hydrogels are important materials having great scientific interest due to biocompatibility, safety and environment-friendly characteristics. In the food industry, hydrogels are widely used due to their three-dimensional crosslinked networks. Furthermore, they have attracted great attention due to their wide range of applications in the food industry, such as fat replacers, encapsulating agents, target delivery vehicles, and many more. In addition to basic and recent knowledge on food hydrogels, this review exclusively focuses on sensorial perceptions, nutritional significance, body interactions, network structures, mechanical properties, and potential hydrogel applications in food and food-based matrices. Additionally, this review highlights the structural design of hydrogels, which provide the forward-looking idea for future applications of food hydrogels (e.g., 3D or 4D printing).

4.
Compr Rev Food Sci Food Saf ; 19(3): 1125-1155, 2020 05.
Article in English | MEDLINE | ID: mdl-33331683

ABSTRACT

Management of stored product insects is a major concern and widely researched topic in the food and grain processing and storage industry. In the scenario of estimated utilization of produces exceeding the production, postharvest losses should be properly controlled to feed the growing population. The prevailing disinfestation techniques are forced to meet regulatory standards and market demands. The resistance developed by insects, environmental concerns, and occupational hazards lead to the vanishing of many chemicals used in insect and pest management programs. Some of the major disinfestation techniques such as the use of chemical fumigants, ozone, irradiation, dielectric heating, extreme temperature treatments, and bio rational approaches are discussed, particularly on the storage of cereal grains and its products, as they contribute to a significant proportion of food consumed worldwide. Newer techniques such as nonthermal plasma and metabolic stress disinfestation and decontamination for stored pest control are developed and evaluated in different parts of the world. The knowledge about the mode of action of these disinfestation techniques is important to avoid the cross-resistance and multiple resistance developed by insects with frequently used techniques. Various alternatives to conventional fumigants are discussed in this review as there is a growing demand for toxic-free, environment-friendly, and, at the same time, efficient techniques.


Subject(s)
Edible Grain , Insect Control/methods , Animals , Food Irradiation , Food Storage/methods , Fumigation/methods , Insecta , Insecticides , Seeds/parasitology , Temperature
5.
J Food Sci ; 88(2): 810-824, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36579836

ABSTRACT

Cereal-based functional foods with shape-changing (four-dimensional [4D]) properties is a novel approach in the current scenario. The main objective of the research is to develop a bioactive compound incorporated in flat two-dimensional xerogel and its hydromorphic three-dimensional shape transformation. The spray-dried curcumin at three different concentrations was incorporated with hydrogel (wheat-barley flour 8%), and flat xerogel was formed by sessile drop drying at 30°C and 78% relative humidity. The top smooth and rough bottom surface of xerogel provided anisotropic swelling properties during the shape transformation. The antimicrobial and antioxidant properties of xerogel were examined, and the retention of curcumin during the shape transformation was also examined during the research. The porous structure of barley-wheat xerogel has enhanced the incorporation of water-insoluble bioactive components like curcumin. The diffusion properties of curcumin xerogel provided an antimicrobial effect against gram-negative pathogenic bacteria. The optimum temperature (70°C) during the shape-shifting provides the retention of bioavailability and functional properties of curcumin. The work describes the opportunities for developing xerogel incorporated with more bioactive and functional components and study its stability and hydromorphic 4D shape-changing behavior. PRACTICAL APPLICATION: Xerogel is a good carrier for different bioactive components. The development of curcumin-infused biodegrade, non-toxic, and cereal-based xerogel provide an excellent opportunity for the delivery of curcumin in a cost-effective way. The shape-changing easily consumable forms of xerogel will attract more consumers, and it retains the bioavailability of infused compounds during processing.


Subject(s)
Curcumin , Curcumin/chemistry , Dietary Supplements , Antioxidants/pharmacology , Hydrogels
6.
Allergol. immunopatol ; 51(SP1)2023. ilus, graf, tab
Article in English | IBECS (Spain) | ID: ibc-220814

ABSTRACT

Background: Sesame is a traditional oilseed comprising essential amino acids. However, the presence of allergens in sesame is a significant problem in its consumption; thus, this study attempted to reduce these allergens in sesame oilseeds.Objective: The present study aimed to evaluate the effect of cold plasma processing on structural changes in proteins, and thereby the alteration of allergenicity in sesame milk. Method: Sesame milk (300 mL) was processed using atmospheric pressure plasma bubbling unit (dielectric barrier discharge, power: 200 V, and airflow rate: 16.6 mL/min) at different exposure times (10, 20, and 30 min).Results: The efficiency of plasma-bubbling unit as measured by electron paramagnetic resonance in terms of producing reactive hydroxyl (OH) radicals proved that generation of reactive species increased with exposure time. Further, the plasma-processed sesame milk subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis and differential scanning calorimetery analysis revealed that plasma bubbling increased the oxidation of proteins with respect to bubbling time. The structural analysis by Fourier transform infrared spectroscopy and circular dichroism revealed that the secondary structure of proteins was altered after plasma application. This change in the protein structure helped in changing the immunoglobulin E (IgE)-binding epitopes of the protein, which in turn reduced the allergen-binding capacity by 23% at 20-min plasma bubbling as determined by the sandwich-type enzyme-linked immunosorbent assay. However, 30-min plasma bubbling intended to increase allergenicity, possibly because of increase in IgE binding due to the generation of neo epitopes.Conclusion: These changes proved that plasma bubbling is a promising technology in oxidizing protein structure, and thereby reducing the allergenicity of sesame milk... (AU)


Subject(s)
Humans , Animals , Plasma Gases/analysis , Sesamum , Plant Extracts , Allergens , Antigens, Plant , Epitopes/analysis , Immunoglobulin E
SELECTION OF CITATIONS
SEARCH DETAIL