Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Am Chem Soc ; 145(37): 20381-20388, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37668654

ABSTRACT

Realizing the dual emission of fluorescence-phosphorescence in a single system is an extremely important topic in the fields of biological imaging, sensing, and information encryption. However, the phosphorescence process is usually in an inherently "dark state" at room temperature due to the involvement of spin-forbidden transition and the rapid non-radiative decay rate of the triplet state. In this work, we achieved luminescent harvesting of the dark phosphorescence processes by coupling singlet-triplet molecular emitters with a rationally designed plasmonic cavity. The achieved Purcell enhancement effect of over 1000-fold allows for overcoming the triplet forbidden transitions, enabling radiation enhancement with selectable emission wavelengths. Spectral results and theoretical simulations indicate that the fluorescence-phosphorescence peak position can be intelligently tailored in a broad range of wavelengths, from visible to near-infrared. Our study sheds new light on plasmonic tailoring of molecular emission behavior, which is crucial for advancing research on plasmon-tailored fluorescence-phosphorescence spectroscopy in optoelectronics and biomedicine.

2.
Nano Lett ; 22(13): 5544-5552, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35699945

ABSTRACT

In situ monitoring of the evolution of intermediates and catalysts during hydrogen oxidation reaction (HOR) processes and elucidating the reaction mechanism are crucial in catalysis and energy science. However, spectroscopic information on trace intermediates on catalyst surfaces is challenging to obtain due to the complexity of interfacial environments and lack of in situ techniques. Herein, core-shell nanoparticle-enhanced Raman spectroscopy was employed to probe alkaline HOR processes on representative PtRu surfaces. Direct spectroscopic evidence of an OHad intermediate and RuOx (Ru(+3)/Ru(+4)) surface oxides is simultaneously obtained, verifying that Ru doping onto Pt promotes OHad adsorption on the RuOx surface to react with Had adsorption on the Pt surface to form H2O. In situ Raman, XPS, and DFT results reveal that RuOx coverage tunes the electronic structure of PtRuOx to optimize the adsorption energy of OHad on catalyst surfaces, leading to an improvement in HOR activity. Our findings provide mechanistic guidelines for the rational design of HOR catalysts with high activity.

3.
Annu Rev Phys Chem ; 72: 331-351, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33472380

ABSTRACT

As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.

4.
J Am Chem Soc ; 143(48): 20049-20054, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34812610

ABSTRACT

Discharging of aprotic sodium-oxygen (Na-O2) batteries is driven by the cathodic oxygen reduction reaction in the presence of sodium cations (Na+-ORR). However, the mechanism of aprotic Na+-ORR remains ambiguous and is system dependent. In-situ electrochemical Raman spectroscopy has been employed to study the aprotic Na+-ORR processes at three atomically ordered Au(hkl) single-crystal surfaces for the first time, and the structure-intermediates/mechanism relationship has been identified at a molecular level. Direct spectroscopic evidence of superoxide on Au(110) and peroxide on Au(100) and Au(111) as intermediates/products has been obtained. Combining these experimental results with theoretical simulation has revealed that the surface effect of Au(hkl) electrodes on aprotic Na+-ORR activity is mainly caused by the different adsorption of Na+ and O2. This work enhances our understanding of aprotic Na+-ORR on Au(hkl) surfaces and provides further guidance for the design of improved Na-O2 batteries.

5.
J Am Chem Soc ; 143(27): 10454-10461, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34192873

ABSTRACT

Vanadia-based catalysts have been widely used for catalyzing various reactions, including their long-standing application in the deNOx process. It has been commonly considered that various vanadium species dispersed on supports with a large surface area act as the catalytically active sites. However, the role of crystalline V2O5 in selective catalytic reduction of NOx with NH3 (NH3-SCR) remains unclear. In this study, a catalyst with low vanadia loading was synthesized, in which crystalline V2O5 was deposited on a TiO2 support that had been pretreated at a high temperature. Surprisingly, the catalyst, which had a large amount of crystalline V2O5, showed excellent low-temperature NH3-SCR activity. For the first time, crystalline V2O5 on low-vanadium-loading catalysts was found to be transformed to polymeric vanadyl species by the adsorption of NH3. The generated active polymeric vanadyl species played a crucial role in NH3-SCR, leading to remarkably enhanced catalytic performance at low temperatures. This new finding provides a fundamental understanding of the metal oxide-catalyzed chemical reaction and has important implications for the development and commercial applications of NH3-SCR catalysts.

6.
Anal Chem ; 93(17): 6573-6582, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33885277

ABSTRACT

Probing the properties and components of reactive surfaces is crucial for illustrating reaction mechanisms. However, common surface analysis techniques are restricted to in situ acquisition of surface information at the molecular scale in the human environment and industrial catalysis processes. Plasmonic spectroscopies are promising tools to solve this problem. This Feature is intended to introduce the plasmonic core-shell nanoparticle enhanced spectroscopies for qualitatively and quantitatively analyzing surface trace species. Four different working modalities are designed for meeting varied needs, involving in situ surface species detection, catalytic process monitoring, labeled sensing, and dual mode analysis. These newly developed plasmonic spectroscopies show great potential not only in fundamental research but also in practical applications.

7.
Acc Chem Res ; 53(4): 729-739, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32031367

ABSTRACT

ConspectusThe rational design of highly efficient catalysts relies on understanding their structure-activity relationships and reaction mechanisms at a molecular level. Such an understanding can be obtained by in situ monitoring of dynamic reaction processes using surface-sensitive techniques. Surface-enhanced Raman spectroscopy (SERS) can provide rich structural information with ultrahigh surface sensitivity, even down to the single-molecule level, which makes it a promising tool for the in situ study of catalysis. However, only a few metals (like Au, Ag, and Cu) with particular nanostructures can generate strong SERS effects. Thus, it is almost impossible to employ SERS to study transition metals (like Pt, Pd, Ru, etc.) and other nonmetal materials that are usually used in catalysis (material limitation). Furthermore, SERS is also unable to study model single crystals with atomically flat surface structures or practical nanocatalysts (morphology limitation). These limitations have significantly hindered the applications of SERS in catalysis over the past four decades since its discovery, preventing SERS from becoming a widely used technique in catalysis. In this Account, we summarize the extensive efforts done by our group since the 1980s, particularly in the past decade, to overcome the material and morphology limitations in SERS. Particular attention has been paid to the work using core-shell nanostructures as SERS substrates, because they provide high Raman enhancement and are highly versatile for application on different catalytic materials. Different SERS methodologies for catalysis developed by our group, including the "borrowing" strategy, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and SHINERS-satellite strategy, are discussed in this account, with an emphasis on their principles and applications. These methodologies have successfully overcome the long-standing limitations of traditional SERS, enabling in situ tracking of catalysis at model single-crystal surfaces and practical nanocatalysts that can hardly be studied by SERS. Using these methodologies, we systematically studied a series of fundamentally important reactions, such as oxygen reduction reaction, hydrogen evolution reaction, electrooxidation, CO oxidation, and selective hydrogenation. As such, direct spectroscopic evidence of key intermediates that can hardly be detected by other traditional techniques was obtained. Combined with density functional theory and other in situ techniques, the reaction mechanisms and structure-activity relationships of these catalytic reactions were revealed at a molecular level. Furthermore, the future of SERS in catalysis has also been proposed in this work, which we believe should be focused on the in situ dynamic studies at the single-molecule, or even single-atom, level using techniques with ultrahigh sensitivity or spatial resolution, for example, single-molecule SERS or tip-enhanced Raman spectroscopy. In summary, core-shell nanostructure-enhanced Raman spectroscopies are shown to greatly boost the application of SERS in catalysis, from model systems like single-crystal surfaces to practical nanocatalysts, liquid-solid interfaces to gas-solid interfaces, and electrocatalysis to heterogeneous catalysis to photocatalysis. Thus, we believe this Account would attract increasing attention to SERS in catalysis and opens new avenues for catalytic studies.

8.
Angew Chem Int Ed Engl ; 60(11): 5708-5711, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33325603

ABSTRACT

Elucidating hydrogen oxidation reaction (HOR) mechanisms in alkaline conditions is vital for understanding and improving the efficiency of anion-exchange-membrane fuel cells. However, uncertainty remains around the alkaline HOR mechanism owing to a lack of direct in situ evidence of intermediates. In this study, in situ electrochemical surface-enhanced Raman spectroscopy (SERS) and DFT were used to study HOR processes on PtNi alloy and Pt surfaces, respectively. Spectroscopic evidence indicates that adsorbed hydroxy species (OHad ) were directly involved in HOR processes in alkaline conditions on the PtNi alloy surface. However, OHad species were not observed on the Pt surface during the HOR. We show that Ni doping promoted hydroxy adsorption on the platinum-alloy catalytic surface, improving the HOR activity. DFT calculations also suggest that the free energy was decreased by hydroxy adsorption. Consequently, tuning OH adsorption by designing bifunctional catalysts is an efficient method for promoting HOR activity.

9.
Angew Chem Int Ed Engl ; 60(28): 15452-15458, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33884737

ABSTRACT

Clarifying interfacial electronic effects on molecular adsorption is significant in many chemical and biochemical processes. Here, we used STM breaking junction and shell-isolated nanoparticle-enhanced Raman spectroscopy to probe electron transport and adsorption geometries of 4,4'-bipyridine (4,4'-BPY) at Au(111). Modifying the surface with 1-butyl-3-methylimidazolium cation-containing ionic liquids (ILs) decreases surface electron density and stabilizes a vertical orientation of pyridine through nitrogen atom σ-bond interactions, resulting in uniform adsorption configurations for forming molecular junctions. Modulation from vertical, tilted, to flat, is achieved on adding water to ILs, leading to a new peak ascribed to CC stretching of adsorbed pyridyl ring and 316 % modulation of single-molecule conductance. The dihedral angle between adsorbed pyridyl ring and surface decreases with increasing surface electronic density, enhancing electron donation from surface to pyridyl ring.

10.
J Am Chem Soc ; 142(27): 11698-11702, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32551614

ABSTRACT

The electrical double layer (EDL) is the extremely important interfacial region involved in many electrochemical reactions, and it is the subject of significant study in electrochemistry and surface science. However, the direct measurement of interfacial electric fields in the EDL is challenging. In this work, both electrochemical resonant Raman spectroscopy and theoretical calculations were used to study electric field distributions in the EDL of an atomically flat single-crystal Au(111) electrode with self-assembled monolayer molecular films. This was achieved using a series of redox-active molecules containing the 4,4'-bipyridinium moiety as a Raman marker that were located at different precisely controlled distances away from the electrode surface. It was found that the electric field and the dipole moment of the probe molecule both directly affected its Raman signal intensity, which in turn could be used to map the electric field distribution at the interface. Also, by variation of the electrolyte anion concentration, the Raman intensity was found to decrease when the electric field strength increased. Moreover, the distance between adjacent Raman markers was ∼2.1 Å. Thus, angstrom-level spatial resolution in the mapping of electric field distributions at the electrode-electrolyte interface was realized. These results directly evidence the EDL structure, bridging the gap between the theoretical and experimental understandings of the interface.

11.
J Am Chem Soc ; 142(15): 7161-7167, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32207969

ABSTRACT

Understanding the reaction mechanism for the catalytic process is essential to the rational design and synthesis of highly efficient catalysts. MoS2 has been reported to be an efficient catalyst toward the electrochemical hydrogen evolution reaction (HER), but it still lacks direct experimental evidence to reveal the mechanism for MoS2-catalyzed electrochemical HER process at the atomic level. In this work, we develop a wet-chemical synthetic method to prepare the single-layer MoS2-coated polyhedral Ag core-shell heterostructure (Ag@MoS2) with tunable sizes as efficient catalysts for the electrochemical HER. The Ag@MoS2 core-shell heterostructures are used as ideal platforms for the real-time surface-enhanced Raman spectroscopy (SERS) study owing to the strong electromagnetic field generated in the plasmonic Ag core. The in situ SERS results provide solid Raman spectroscopic evidence proving the S-H bonding formation on the MoS2 surface during the HER process, suggesting that the S atom of MoS2 is the catalytic active site for the electrochemical HER. It paves the way on the design and synthesis of heterostructures for exploring their catalytic mechanism at atomic level based on the in situ SERS measurement.

12.
Anal Chem ; 92(10): 7146-7153, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32297736

ABSTRACT

Metallic nanoclusters (NCs) have molecular-like structures and unique physical and chemical properties, making them an interesting new class of luminescent nanomaterials with various applications in chemical sensing, bioimaging, optoelectronics, light-emitting diodes (LEDs), etc. However, weak photoluminescence (PL) limits the practical applications of NCs. Herein, an effective and facile strategy of enhancing the PL of NCs was developed using Ag shell-isolated nanoparticle (Ag SHIN)-enhanced luminescence platforms with tuned SHINs shell thicknesses. 3D-FDTD theoretical calculations along with femtosecond transient absorption and fluorescence decay measurements were performed to elucidate the enhancement mechanisms. Maximum enhancements of up to 231-fold for the [Au7Ag8(C≡CtBu)12]+ cluster and 126-fold for DNA-templated Ag NCs (DNA-Ag NCs) were achieved. We evidenced a novel and versatile method of achieving large PL enhancements with NCs with potential for practical biosensing applications for identifying target DNA in ultrasensitive surface analysis.

13.
Phys Rev Lett ; 125(4): 047401, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32794816

ABSTRACT

Sum-frequency generation (SFG) spectroscopy is a highly versatile tool for surface analysis. Improving the SFG intensity per molecule is important for observing low concentrations of surface species and intermediates in dynamic systems. Herein, Shell-Isolated-Nanoparticle-Enhanced SFG (SHINE-SFG) was used to probe a model substrate. The model substrate, p-mercaptobenzonitrile adsorbed on a Au film with SHINs deposited on top, provided an enhancement factor of up to 10^{5}. Through wavelength- and polarization-dependent SHINE-SFG spectroscopy, the majority of the signal enhancement was found to come from both plasmon enhanced emission and chemical enhancement mechanisms. A new enhancement regime, i.e., the nonlinear coupling of SHINE-SFG with difference frequency generation, was also identified. This novel mechanism provides insight into the enhancement of nonlinear coherent spectroscopies and a possible strategy for the rational design of enhancing substrates utilizing coupling processes.

14.
J Chem Phys ; 152(1): 014702, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31914769

ABSTRACT

Light-matter interactions in nanostructures have shown great potential in physics, chemistry, surface science, materials science, and nanophotonics. Herein, for the first time, the feasibility of strong coupling between plasmon-induced magnetic resonant and propagating surface plasmonic modes at visible light frequencies is theoretically demonstrated. Taking advantage of the strong coupling between these modes allowed for a narrow-linewidth hybrid mode with a huge electromagnetic field enhancement to be acquired. This work can serve as a promising guide for designing a platform with strong coupling based on magnetic resonance at visible and even ultraviolet light frequencies and also offers an avenue for further exploration of strong light-matter interactions at the nanoscale.

15.
Phys Chem Chem Phys ; 21(3): 1552-1563, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30620030

ABSTRACT

Dioxides (dioxygenyl (O2+), dioxygen (O2), superoxide (O2˙-) and peroxide (O22-)) are of immense biological, chemical and environmental importance. The ability to accurately detect and measure the changing strength of their chemical bonding and coordination in situ or operando is extremely beneficial in order to evaluate their chemical properties, this has been particularly important recently in the field of metal-oxygen batteries, where understanding the reactivity of the O2˙- intermediate is crucial in the development of more stable electrolytes. Meta-analysis of the collated vibrational Raman and IR spectral bands of numerous (>200) dioxygen species was used to interpret the effect that the immediate chemical environment has on the O-O bond. Subsequently, the dioxide vibrational spectral bands were empirically related directly with the bond electron density and other fundamental bond properties, with surprisingly high accuracy, allowing each property to be estimated, simply, from experimental spectroscopic observations. Important chemical information about the strength of secondary interactions between reduced oxygen species and its chemical environment can be also elucidated which provides a convenient method for determining the attractive strength an ion exerts over neighbouring counter ions.

16.
Angew Chem Int Ed Engl ; 58(35): 12133-12137, 2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31268611

ABSTRACT

The fundamental understanding of the subtle interactions between molecules and plasmons is of great significance for the development of plasmon-enhanced spectroscopy (PES) techniques with ultrahigh sensitivity. However, this information has been elusive due to the complex mechanisms and difficulty in reliably constructing and precisely controlling interactions in well-defined plasmonic systems. Herein, the interactions in plasmonic nanocavities of film-coupled metallic nanocubes (NCs) are investigated. Through engineering the spacer layer, molecule-plasmon interactions were precisely controlled and resolved within 2 nm. Efficient energy exchange interactions between the NCs and the surface within the 1-2 nm range are demonstrated. Additionally, optical dressed molecular excited states with a huge Lamb shift of ≈7 meV at the single-molecule (SM) level were observed. This work provides a basis for understanding the underlying molecule-plasmon interaction, paving the way for fully manipulating light-matter interactions at the nanoscale.

17.
Angew Chem Int Ed Engl ; 58(45): 16062-16066, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31513325

ABSTRACT

It is vital to understand the oxygen reduction reaction (ORR) mechanism at the molecular level for the rational design and synthesis of high activity fuel-cell catalysts. Surface enhanced Raman spectroscopy (SERS) is a powerful technique capable of detecting the bond vibrations of surface species in the low wavenumber range, however, using it to probe practical nanocatalysts remains extremely challenging. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used to investigate ORR processes on the surface of bimetallic Pt3 Co nanocatalyst structures. Direct spectroscopic evidence of *OOH suggests that ORR undergoes an associative mechanism on Pt3 Co in both acidic and basic environments. Density functional theory (DFT) calculations show that the weak *O adsorption arise from electronic effect on the Pt3 Co surface accounts for enhanced ORR activity. This work shows SHINERS is a promising technique for the real-time observation of catalytic processes.

18.
Faraday Discuss ; 206: 379-392, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28960000

ABSTRACT

Superoxide (O2˙-) is the key intermediate formed during oxygen reduction in non-aqueous electrolytes. One significant obstacle towards the realisation of a practical lithium-oxygen (Li-O2) battery is electrolyte instability in the presence of radical oxides, principally superoxide. Here we use the Raman active bands of O2˙- as a diagnostic molecule for probing the influence of the electrolyte on reaction processes and intermediaries at the electrode surface. In situ surface enhanced Raman studies of the interface at a roughened Au electrode with controlled and dynamic surface potentials were performed in two ionic liquids with differing properties: 1-butyl-1-methyl-azepenium bis(trifluoromethanesulfonyl)imide (Aze14TFSI), which has a large/soft cation, and triethylsulfonium bis(trifluoromethanesulfonyl)imide (TESTFSI), which has a relatively small/hard and e- accepting cation. The counter-cation and potential were seen to significantly influence the radical nature, or Lewis basicity of O2˙-. The analysis of peak intensities and Stark shifts in O2˙- related spectral bands allowed for key information on its character and electrolyte interactions to be elucidated. Time-resolved studies of dynamic surface potentials permitted real time observation of the flux and reorientation of ions at the electrode/electrolyte interface.

19.
ACS Nano ; 16(12): 21388-21396, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36468912

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that has been extensively applied in the studies of catalysis, electrochemistry, material science, etc.; however, it is substrate and material limited. The development of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) effectively offsets this limitation that attracts enormous attention due to its potential to be applied to any surface. As the core of the SHINERS technique, the inert shell prevents the exposure of the active metal surface, however, also significantly enlarges the metallic gap where the light is trapped. Consequently, the shell is widely considered a side issue to debilitate the coupling efficiency and hinder the sensitivity of SHINERS without systematic studies. Herein, we investigate the shell and structural effect of SHINERS by performing the quantitative optical and structural characterization of single nanostructures. By a statistic of over two hundred nanostructures, we observe that the field enhancement loss due to the shell could be overcome by optimizing the coupling geometry of the shell-isolated nanoparticles (SHINs). An example of SHIN dimers shows even higher field enhancement than their bare Au nanoparticle counterparts as confirmed and explained by FDTD simulations. We demonstrate the signal enhancement of SHINERS saturates with the increasing number of hot spots but could be further optimized by altering the aggregation geometries of the nanoparticles. The sensitivity improvement of the SHINERS technique will boost its broader applications in material science.

20.
Adv Mater ; 33(50): e2005900, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33811422

ABSTRACT

Plasmonic core-shell nanostructures have attracted considerable attention in the scientific community recently due to their highly tunable optical properties. Plasmon-enhanced spectroscopies are one of the main applications of plasmonic nanomaterials. When excited by an incident laser of suitable wavelength, strong and highly localized electromagnetic (EM) fields are generated around plasmonic nanomaterials, which can significantly boost excitation and/or radiation processes that amplify Raman, fluorescence, or nonlinear signals and improve spectroscopic sensitivity. Herein, recent developments in plasmon-enhanced spectroscopies utilizing core-shell nanostructures are reviewed, including shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), plasmon-enhanced fluorescence spectroscopy, and plasmon-enhanced nonlinear spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL